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Abstract: In this study, the radial basis function (RBF) which has good performance for nonlinear 

problem is introduced to approximate the implicit relationships between EDM parameters and 

performance responses for 304 steel. The fitting precision of RBF is compared with the second order 

polynomial response surface (PRS), support vector regression (SVR) and Kriging model (KRG) 

using the multiple correlation coefficient (R2) based cross validation error method. Then the RBF 

model is called to conduct multi-objective optimization using non-dominated sorting genetic 

algorithm II (NSGA-II) method. The energy consumption index unit energy consumption (UEC) and 

the air-pollution indices PM2.5 and PM10 are considered in proposed multi-objective optimization 

model. UEC is considered as the objective function to reduce the machining cost and the PM indices 

are termed as the constraints to protect the operators’ health. The pulse current, time period and duty 

cycle are considered as the main factors affecting the EDM responses. According to the Pareto plots 

of multi-objective optimization model, conclusion can be drawn that SR and PM10 play significant 

roles in multi-optimization and PM2.5 has less influence on optimization results. The results of the 

present study reveal that using maximum material removal rate (MRR) and minimum UEC as 

objective and using surface roughness (SR), PM2.5 and PM10 as constraints can be an effective 

method to provide appropriate process parameters reference for EDM machining. 
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1. Introduction  

Electrical discharge machining (EDM) is an important non-traditional manufacturing method 

for machining electrically conductive and hard materials [1]. By the energy of electrical discharges 

between a tool electrode and a workpiece electrode in dielectric fluid environment, EDM is widely 

used to make dies, molds, and finishing parts for aerospace, automotive, and surgical components [1,2]. 

The performance of EDM is generally evaluated on the basis of material removal rate (MRR), tool 

wear rate (TWR), surface roughness (SR), surface kurtosis (Sku), and surface skewness (Ssk) [1,3,4]. 

A considerable amount of researches has been reported on the model construction of EDM 

performance response and the recognition of main EDM parameters. Based on central composite 

design (CCD), Gopalakannan et al. constructed a quadratic response surface model (RSM) to predict 

MRR, EWR and SR at different machining parameters on machining Al 7075 [3]. Their study reveals 

that the pulse current and pulse on time are main factors that affect MRR, EWR and SR [5]. 

Mohammadjafar et al. investigated the effects of different tool initial SR values and EDM parameters 

on the machined workpiece SR, TWR, MRR, and the tool SR [4]. The results showed that TWR 

increases and MRR decreases with the increase in tool surface roughness, while the initial tool SR 

has slight influence on final workpiece SR [6]. 

One of the most critical problems in EDM is to select proper parameters combination for 

optimum machining performance measures [7]. Usually, EDM parameters are selected on the basis 

of operator’s experience or data reference provided by the manufactures [1]. To overcome this 

problem, many researches on EDM parameter optimization have been proposed. Somashekhar 

introduced the artificial neural network (ANN) for analyzing the material removal of micro-EDM to 

establish the parameter optimization model, and then optimize the process parameters for desired 

machining characteristics output [8]. Majumder uses fuzzy logic and particle swarm optimization 

(PSO) algorithm to determine the optimal machining parameters (pulse current, pulse on time, and 

pulse off time) for improving the machining performance (MRR and EWR) during the EDM of AISI 

316LN stainless steel [9]. In Majumder’s study, Taguchi L9 orthogonal array was generated to 

conduct the experimentation and the multiple least-square regression technique was introduced to 

model the relationship between the input factors and performance responses [9]. Based on a cost 

index combining MRR and TWR, D’Urso analyzed the influence of peak current, voltage and 

frequency and of their interactions on the process performance in micro-EDM drilling [10]. Parsana 

carried out the multi-objective EDM parameter optimization of Mg–RE–Zn–Zr alloy by using the 

Passing Vehicle Search (PVS) algorithm [11]. Through the Box–Behnken design, the influence 

correlativity of input parameters including the pulse-on, pulse-off and peak current on the MRR, 

TWR and roundness of holes are built using response surface method (RSM) [11]. To maximize the 

MRR and minimize the SR as well as the spark gap in EDM of Inconel 825, Rajyalakshmi and 

Ramaiah adopted the Taguchi grey relational analysis method to optimize the EDM process 

parameters [12]. The results showed that commonly used EDM parameters such as the pulse on time, 

pulse off time, and corner servo voltage et al. all be found to have significant influence on the EDM 

performance response in rough machining stage [12]. Using response surface methodology, Świercz 

investigated the influence of the EDM parameters on the surface integrity and MRR [13]. The results 

showed that the discharge current had the most influence (over the 50%) on the SR, the thickness of 

the white layer (WL), and the MRR, and MRR [13]. 

The study on the influence of EDM process parameters on machining responses has been 
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carried out by many researchers. Commonly used methods in EDM performance modeling and 

parameter optimization include NSGA-II [14,15], response surface methodology [5,16], particle 

swarm optimization [9,17], artificial neural networks [18,19], Taguchi method [9,20,21] and grey 

relational analysis [20,22]. However, there are still some issues need to be solved. Orthogonal test 

design and CCD are generally used in existing method to construct the model of EDM performance, 

which leads to an unsatisfactory uniformity and projection of sample distribution. Moreover, the 

relationship between EDM performance characteristics and process parameters is highly nonlinear, 

but existing surrogate models used in EDM behave not so well for nonlinear problems. Further, the 

power consumption and air pollution are also needed to be considered in constructing the EDM 

parameter optimization model for clean production. 

In this study, a novel EDM parameter optimization model is developed. The power consumption 

index UEC and air pollution indices (PM2.5 and PM10) are considered for clean production in 

proposed model. The RBF model which has good performance for nonlinear problem is used to 

model the relationship between EDM performance characteristics and process parameters. NSGA-II 

algorithm is applied to solve the multi-objective optimization model to obtain the optimal EDM 

parameter set. 

The following of this paper is organized as follows. EDM materials and experiments are 

introduced in Section 2. Next is the proposed optimization model in Section 3. Then the optimization 

results are discussed in Section 4. Finally, conclusions are drawn in Section 5. 

2. Methods and experiments 

In this study, EDM experiments are performed to obtain the data. EDM machine Changfeng 350 

shown in Figure 1 is applied to machine the 304 steel. 304 steel used here because it’s widely used in 

chemical, petrochemical, fertilizer, food processing, and pharmaceutical industries [23]. The 

chemical composition of 304 steel is shown in Table 1. The electrode is a copper bar with the length 

of 160 mm and section of 20 mm × 20 mm as shown in Figure 1(b). 

 

Figure 1. EDM experiments. 

Table 1. Chemical composition of 304 steel. 

Element C Si Mn P S Cr Ni N 

% Weight ≤ 0.08 ≤ 1.0 ≤ 2.0 ≤ 0.035 ≤ 0.03 18.0–20.0 5.0–10.5 ≤ 1.0 

The flowchart of proposed EDM parameter optimization method is shown in Figure 2. The 

experiment and optimization procedure are detailed as follows. 
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Figure 2. Flowchart of proposed EDM parameter optimization method. 

To reduce the number of EDM experiments but generate representative samples, Latin 

Hypercube Sampling (LHS) method is used select EDM parameter combinations in this study. 

Compared with orthogonal experimental design [15] and CCD [24], LHS can obtain well-distributed 

and representative samples in the design space. Moreover, LHS has the freedom to define the sample 

number, thereby providing greater flexibility for problem with different dimensionality [25]. 

LHS has been widely used due to its good spatial uniformity and projection characteristics. LHS 

is a global non-overlapping spatial sample filling method. The basic principle is to divide each 

dimension into n small regions evenly, and randomly take n sample points in all regions. The model 

for randomly selecting n LHS sample points in the m-dimensional design space is as follows: 

X [ ( ) (0,1)] / ;1 ,1ij j ijr i U n i n j m            (1) 

Where ( )r i  denotes a random integer arrangement of 1 to n, (0,1)U  represents a random 

distribution over the interval [0, 1]. In Latin hypercube sampling, each sample point is taken with the 

same probability to ensure global representation of the design space. In addition, LHS has the 

advantages of flexible sample setting, high sampling efficiency and good balance. Therefore, it is 

proposed to use Latin hypercube sampling to select the sample points. 

After sampling by LHS, the EDM experiments were carried out to collect the response data. In 

this paper, UEC, MRR, SR, PM2.5 and PM10 are selected as the EDM response outputs. The UEC 

(W/mm
3
) is defined as the energy consumption per unit volume. The MRR is identified indirectly as 

the ratio of the machined volume and the machined time. The SR was measured using Mahr MarSurf 

M300 roughness tester. The PM2.5 and PM10 data are measured using BOSCH cube Air particulates 

measure meter. The height of the air particulates measure meter is 1.6 m and the distance to the 

machining position is 1 m, which approximately simulates the actual position of the operator. The 

PM data is collected every 2 minutes until the end of machining. Then the mean value is calculated 

as the PM value at current EDM parameter combination. 

The relationship between EDM parameter inputs and response outputs was approximated using 
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the RBF model. In RBF, the Euclidean distance between the sample point and the point to be 

predicted is used as an input variable of a radially symmetric kernel function, and these radial 

symmetric kernel functions are used to perform linear combination. The expression of RBF is as 

follow: 

0

1

( ) ( )
N

i i

i

y x x x  


           
(2)

 

Where 
0  represents a polynomial function, N is the number of sampling points, 

i  is the weight 

coefficient of the radially symmetric kernel function,   is expressed as a radially symmetric kernel 

function. 
ix  denotes a sample point in the known sample data,  means the Euclid distance. 

The RBF model has no specific requirement for response characteristics, and can fit well to any 

kind of function (especially for functions with high nonlinearity), and has strong robustness and 

adaptability. And it can deal with the problem of scattered points in multi-dimensional space, the 

convergence speed is faster, and the calculation cost is lower. Therefore, the RBF model is selected 

in this paper to model the implicit relationship between the EDM inputs and outputs. The type of the 

basis functions used for construct RBF model is Multiquadric. 

3. Multi-objective optimization 

3.1. EDM process parameters optimization model 

In EDM, UEC is as small as possible to reduce the energy consumption. MRR is as great as 

possible to improve the machining efficiency. However, strong confliction between these two 

objectives is observed because a lower UEC is always along with a lower MRR, which leads lower 

energy consumption but lower machining efficiency [2]. Therefore, both UEC and MRR should be 

considered in EDM parameters optimization. The multi-objective optimization problem in this study 

is formulated as: 

1 1 2 3

2 1 2 3

1 1 2 3

2 1 2 3 2

3 1 2 3 3

1

2

Min: ( , , ) UEC

and max: ( , , ) MRR

s. t.: SR= ( , , )<6.3

PM2.5= ( , , )

PM10= ( , , )

       4<Pulse current 10

       100<Frequency 500

       0.4<Duty cy

f X X X

f X X X

g X X X

       g X X X g

       g X X X g

X

X













3cle 0.7X 

        (3) 

Where, 
2g  and 

3g  are determined according to Chinese National Standards. The lower limits and 

upper limits of EDM parameters are determined according to the EDM machine. 

Unit energy consumption (UEC) is the power per unit volume, which is calculated as follows 
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UEC= * * / ( * )U I t S d          (4) 

Where, the voltage U  and the current I  are obtained using a multimeter; t  is the machining time, 

S  is the area of machined surface and d  is the machining depth. 

MRR is calculated as follows 

MRR= * /S d t          (5) 

In this formula, S , d  and t  have the same definition as those in UEC calculation. 

As can be seen from the above two formulas, UEC is inversely proportional to that of the MRR 

to an extent. Larger S , d  and smaller t  generates a larger MRR but a smaller UEC. Furthermore, 

the voltage U  and the current I  also have positive influence on UEC. 

Different from existing EDM parameter optimization methods, the pollution indicators PM2.5 

and PM10 are considered in this study. The PM10 is the particulate matter with an effective 

aerodynamic diameter smaller than 10 mm, which is reported to be correlated to the increase in 

hospital admissions for lung and heart disease [26]. The PM2.5 is the particulate matter with an 

aerodynamic diameter below 2.5 mm, which is sufficiently small to be ingested deep into human 

lungs [27]. For these reasons, the PM10 and PM2.5 are considered to ensure the health of operator in 

this paper. 

3.2. EDM process parameters optimization 

The multi-objective optimization problem modeled in Eq 3 was solved by NSGA-II algorithm [28].  

NSGA-II [11] is one of the most widely used Pareto dominance based multi-objective 

evolutionary algorithms (MOEAs) with fast non-dominating sorting procedure for discriminating 

solutions [29]. 

A multi-objective optimization problem (MOP) is formulated as follows 

1 2

1 2

minimize    ( ) ( ( ), ( ), ( ))

subject to   ( ) ( ( ), ( ), ( )) 0

n

m

F x f x f x f x

G x g x g x g x



        (6) 

Where, x  is the decision variable,
 

  F x  is the objective function with n  objectives, and  G x  is 

the constraint function with m  constraints. Considering two decision variables a and b,   F a  is 

said to dominate   F b
 
as follows 

 

 

1 2

1 2

   1,2, , : ( ) ( )

 1,2, , : ( ) ( )

subject to   ( ) ( ( ), ( ), ( )) 0

( ) ( ( ), ( ), ( )) 0

i i

i i

m

m

if i n f a f b

and i n f a f b

G a g a g a g a

                   G b g b g b g b

  

  

 

 
      

(7)
 

The Pareto optimal point *x  is defined if there is no feasible x  such that   F x
 
dominates 
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 * F x . The set of all the Pareto optimal points is termed the Pareto set [30,31]. 

In NSGA-II, N initial population is generated firstly, and then N offspring population is 

generated from genetic operators such as fitness scaling, selection, crossover and mutation [32]. 

After that, 2N population, including N offspring population and N parent population, is ranked based 

on the non-dominations principle. Meanwhile, the crowded tournament selection operator is 

conducted for individuals of every non-dominated level. The new N parent population is generated 

according to the non-dominated relation and the crowding distance. More details of the theoretical 

background of NSGA-II can be found in literature [26]. 

In this study, the trained RBF model was embedded into the NSGA-II algorithm by serving as 

the objective and constraint function. The computer codes of the optimization algorithm were 

performed in MATLAB 7.11. To ensure the accuracy and efficiency of proposed method, different 

combinations of population size ( p
N = 100,200,500), iteration number (

i
N = 100,500,1000), 

crossover probability (
c

P = 0.3,0.6,0.9) and mutation probability ( mP = 0.02,0.05,0.1) are tested in 

NSGA-II to obtain respective non-dominated solutions. Then all the non-dominated solutions are 

merged to generate a new solution set. The number of non-dominated solutions is recalculated in the 

new solution set. Compared with other parameter combinations, more non-dominated solutions are 

observed when =200
p

N , =500
i

N , =0.9
c

P , =0.05mP . Therefore, =200
p

N , =500
i

N , =0.9
c

P , 

=0.05mP  is used in this study. 

The main steps of the NSGA-II algorithm in EDM parameter optimization are listed as follows. 

(1) Population initialization. 200 individuals (combinations of pulse current, time period and duty 

cycle) are randomly generated as the first generation population P; 

(2) Response evaluation. Obtain the objective and constraint response for each individual in 

population P by calling the trained RBF model; 

(3) Population sorting. Using the non-dominated sorting approach to sort the population P into 

Pareto fronts, and then calculate the crowding distance of every individual in each Pareto front [33]; 

(4) Offspring generation. From generation P, offsprings are generated through selection (using 

crowded-comparison-operator), crossover (using Simulated Binary Crossover) and mutation 

(using polynomial mutation). M is denoted in this study to represent the offspring population; 

(5) Response re-evaluation. Obtain the objective and constraint response for each individual in 

population P M  by calling the trained RBF model; 

(6) Population re-sorting. Using the non-dominated sorting approach to sort the population P into 

Pareto fronts, and then calculate the crowding distance of every individual in each Pareto front; 

(7) Population update. 200 individuals are selected from P M , where the dominating Pareto fronts 

and the individuals with a larger crowded distance are first considered. Then the population P is 

updated to contain these 200 selected individuals; 

(8) Termination. Steps (4)–(7) are repeated until the iteration number reaches 500. And then each 

individual in the first Pareto front is termed as an optimal solution. 
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Figure 3. The main steps of the NSGA-II. 

4. Results and discussion 

The machined workpiece are shown in Figure 1(c). Table 2 shows the LHS samples and the 

responses of EDM experimental results in this paper. The RBF model approximating the relationship 

between EDM parameters (pulse current, time period and duty cycle) and performance characteristic 

(UEC, MRR, SR, PM2.5 and PM10) was built using these data. 

For comparison, the commonly used surrogate model such as the second order polynomial 

response surface (PRS) [34,35], support vector regression (SVR) [36,37] and Kriging model (KRG) [38,39] 

are also used to fit the initial samples and corresponding EDM responses. To evaluate the fitting 

precision of each surrogate model, the multiple correlation coefficient ( 2R ) based cross validation 

error is used in this study [40]. The calculation formula is as follows 

2 2 2

1 1

ˆ1 ( ) / ( )
m m

i i i
i i

R y y y y
 

    

                        

(8)

  
Where, m  is the number of samples to construct the surrogate model; iy  is the actual response 

function value, ˆ
iy  is the predicted function value of surrogate model which is constructed using all 

samples except the thi  sample; y  is the mean value of the actual response function value of all 

m  samples. If the 2R  of the model approaches to 1, the model will be of high accuracy. 
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Table 2. LHS samples and the corresponding EDM responses. 

No. 
Pulse current 

(A) 

Time Period 

( μs ) 
Duty cycle UEC MRR SR PM2.5 PM10 

1 9.5 267 0.59 81.42 15.22 10.36 426.2 543.1 

2 8.9 284 0.47 85.22 12.80 11.57 237.1 255.1 

3 6.7 445 0.45 60.20 4.84 10.61 198.9 221.6 

4 6.4 164 0.62 80.13 10.43 7.51 579.8 609.2 

5 4.2 211 0.68 36.60 5.40 8.43 595.6 632.3 

6 8.0 199 0.34 53.88 7.76 9.96 598.4 647.0 

7 5.7 137 0.64 72.15 8.95 6.52 515.5 564.0 

8 6.9 488 0.69 32.11 6.17 7.70 150.0 163.8 

9 5.4 475 0.48 62.50 7.59 7.73 211.2 131.1 

10 9.0 144 0.65 124.44 21.38 9.13 472.3 497.1 

11 8.4 400 0.35 98.51 11.87 12.76 321.9 251.7 

12 5.1 353 0.54 54.67 3.70 7.67 360.6 383.7 

13 9.4 323 0.62 105.92 13.82 14.32 208.2 224.0 

14 9.9 464 0.32 75.05 10.16 14.75 378.5 266.8 

15 8.1 304 0.51 84.70 11.14 11.73 98.7 105.3 

16 6.2 231 0.42 52.21 5.68 8.90 526.8 568.7 

17 6.1 365 0.53 64.82 5.31 9.46 151.3 262.2 

18 4.1 255 0.56 46.06 3.59 6.62 684.5 727.9 

19 7.4 183 0.37 54.01 7.13 9.27 626.2 677.3 

20 7.7 448 0.50 78.42 8.26 11.82 194.0 217.6 

21 9.6 418 0.67 134.28 19.65 14.32 231.2 250.5 

22 5.5 174 0.36 39.13 4.17 8.33 584.9 632.4 

23 8.2 126 0.57 97.59 15.30 9.65 458.7 491.2 

24 4.5 367 0.39 34.57 2.02 6.15 424.2 570.7 

25 5.0 334 0.60 58.72 4.32 7.18 356.5 376.1 

26 7.0 290 0.53 75.55 8.70 10.93 78.7 82.0 

27 7.3 111 0.31 85.59 8.05 7.89 616.5 663.4 

28 5.9 383 0.42 49.04 3.71 9.06 354.4 385.9 

29 4.6 239 0.44 40.51 3.47 7.35 639.8 687.5 

30 8.7 425 0.40 85.81 11.44 13.22 279.2 306.4 

Using the multiple correlation coefficient ( 2R ) based cross validation error to evaluate the 

accuracy of each surrogate model, the comparative results are shown in Table 3.  

As can be seen from Table 3, if PRS, SVR and KRG are used to approximate the relationship of 

EDM parameters and performance responses, the fidelity cannot satisfy the approximation 

requirement ( 2R  is smaller than 0.9). It’s worth noting that the relationship plot between UEC and 

EDM process parameters is highly nonlinear, which is quite different from that of the second order 

polynomial response surface. Therefore, the predication error is so huge that a negative R
2
 generates 

for PRS. The 2R  of RBF is 0.9027, 0.9046, 0.9145, 0.9168 and 0.9236 for UEC, MRR, SR, PM2.5 

and PM10. Therefore, RBF has high fitting accuracy for EDM performance responses ( 2R  is greater 

than 0.9) [2]. The reason is that RBF performs better for nonlinear problems compared to other 
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surrogate model. Therefore, RBF is a reliable surrogate model to render the implicit relationship 

between EDM parameters and performance response. 

Table 3. Accuracy comparisons of different surrogate model using 2R . 

 UEC MRR SR PM2.5 PM10 

PRS –0.1201 0.6878 0.6969 0.6315 0.5957 

SVR 0.4581 0.6268 0.6547 0.7559 0.6579 

KRG 0.4047 0.7597 0.7081 0.7819 0.7775 

RBF 0.9027 0.9046 0.9145 0.9168 0.9236 

There is no single optimum for all objective functions in multi-objective optimization problem [2]. 

Therefore, a set of different solutions named Pareto optimal set are acquired. Based on the regression 

model built to approximate the implicit relationship between EDM parameters and performance 

responses, NSGA-II is applied to solve the multi-objective optimization model in Eq 3. Theoretically, 

MRR and SR increase with increase in pulse current, time period and duty cycle. However, the 

relationship between the three above EDM parameters and UEC, PM2.5 and PM10 are complicated. 

Therefore, which parameter combinations are optimal for maximum MRR and minimum UEC is still 

a question.  

Table 4. Values of PM2.5 and PM10 in Chinese national standards. 

PM10 (ug/m
3
) PM2.5 (ug/m

3
) 

Primary 

standard 

Secondary 

standard 
Excellent Good 

Slightly 

polluted 

Moderately 

polluted 

Heavily 

polluted 

Severely 

polluted 

<50 <150 <50 <100 <150 <200 <300  >300 

In this study, multiple constraints with different limits are considered in the optimization model. 

The limit of SR is 6.3 um because many electric discharge machined products require the surface 

roughness below than Ra6.3, which satisfies the requirements of many manufacturing enterprise. 

And the limits of PM2.5 and PM10 are determined according to Chinese National Standards (Seen in 

Table 4). It is worth noting that the excellent standard for PM2.5 (<50 ug/m
3
) and the primary 

standard for PM10 (<50 ug/m
3
) are not considered as constraints in this study because the values of 

all experiment samples in PM2.5 and PM10 are greater than 50. For each value of PM2.5, PM10 and 

SR combination, the Pareto plot is demonstrated in Figure 4. In a broad sense, these solutions (blue 

×) are optimal that no other solutions in the design region are superior to them when both UEC and 

MRR are considered. 

As can be seen from Figure 4, the Pareto plots with different PM2.5 constraints (PM2.5 < 100, 

PM2.5 < 150, PM2.5 < 200 and PM2.5 < 300) are almost overlapped, which means no obvious 

change of optimal solution set is generated with stricter PM2.5 constraints. The reason may be that 

other constraints (SR and PM10) play more significant roles on the results of multi-optimization in 

this study. 
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Figure 4. Pareto plots of proposed method with different PM2.5 constraints. 

To demonstrate the above idea, additional optimization experiments are conducted. The Pareto 

plots for unconstrained problem, problem with only SR < 6.3 constraint, problem with only PM2.5 < 

300 constraint and problem with only PM10 < 150 constraint are shown in Figure 5. The reason of 

Pareto plots breaking lies in the high nonlinearity of the objective functions. That’s also an important 

reason to use RBF here. Compared with unconstrained problem, the Pareto plot for problem with 

only SR < 6.3 constraints is much shorter, which means many solutions are regarded as infeasible 

when SR < 6.3 constraint are imposed. The Pareto plot for only PM2.5 < 300 constraint is of similar 

shape to that of unconstrained problem. But the location is at the upper left of the Pareto plot for 

unconstrained problem, which means less feasible solutions are obtained when PM2.5 < 300 

constraint is imposed. The shape and location of the Pareto plot for only PM10 < 150 constraint are 

both different from those of unconstrained problem, which means that PM10 has important influence 

for the multi-objective results in this study. Take all the four problems into consideration, 

conclusions can be drawn that SR < 6.3 and PM10 < 150 play the more important role in EDM 

parameter optimization.  
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Figure 5. Pareto plots of proposed method with different constraints. 

To further verify the agreement between the optimal solution and the real EDM experiment with 

optimal parameter, additional EDM experiment is performed. A point with asterisk in Figure 4(a) 

(UEC = 30.81, MRR = 5.90) was selected as an optimization solution, the corresponding EDM 

parameter is ([4.6 493 0.64]). Using these optimal parameters to carry out EDM experiments, the real 

experiment results are compared with the prediction results in Table 5. The relative error is 

calculated by /v v v . 

Table 5. Results comparisons of Actual Value and Predicted Value at selected optimum. 

 UEC MRR SR PM2.5 PM10 

Actual Value ( v ) 31.42 6.14 3.7 89 92 

Predicted Value ( v ) 30.81 5.90 3.4 82 97 

Relative Error (%) 1.94 3.91 8.11 7.87 5.15 

The relative errors of UEC, MRR, SR, PM2.5, and PM10 between predicted values and the real 

machining are 1.94%, 3.91%, 8.11%, 7.87%, and 5.15%, respectively. These errors are acceptable 

for EDM machining application [41]. This result confirms that the RBF model and the NSGA-II 

optimization algorithm are reliable for EDM parameter optimization with multiple constraints. 
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5. Conclusion 

In this study, the RBF model is applied to approximate the implicit relationships between EDM 

parameters and performance responses for 304 steel, which is called to conduct multi-objective 

optimization using NSGA-II algorithm. The main conclusions of this study are drawn as follows: 

(1) The energy consumption index UEC and the air-pollution indices (PM2.5 and PM10) are 

considered in proposed multi-objective optimization model. UEC is considered as the objective 

function to reduce the machining cost and PM indices are termed as the constraints to protect 

the operators’ health. 

(2) The relationships between process parameters and performance responses are nonlinear in EDM 

parameter optimization. Using cross validation error based R
2
 to verify the accuracy of 

commonly used surrogate models, the fidelities of PRS, SVR and KRG cannot be acceptable in 

this study. However, all the R
2 

values of 5 performance responses using RBF is reliable (>0.9). 

Therefore, RBF is applied for accurate relationship approximation between EDM parameters 

and performance responses. 

(3) The samples applied to construct the RBF model is selected using LHS method, which is of 

good spatial uniformity and projection characteristics.   

(4) The Pareto plots of multi-objective optimization model with different PM2.5 constraint are 

obtain using NSGA-II. And the fitting plots of Pareto front for PM2.5 < 100, PM2.5 < 150, 

PM2.5 < 200, and PM2.5 < 300 are almost overlapped. The reason is that other constraints (SR 

and PM10) contribute most to the results of multi-optimization when PM2.5 < 300 in this study.  

(5) Additional optimization experiments for unconstrained problem, problem with only SR < 6.3 

constraint, problem with only PM2.5 < 300 constraint and problem with only PM10 < 150 

constraint are conducted to demonstrate to prove the above idea. And conclusions can be drawn 

that SR < 6.3 and PM10 < 150 play the more important role in EDM parameter optimization. 

The optimization results mean that using MRR and UEC as objective and using SR, PM2.5 and 

PM10 as constraints can be an effective method to provide appropriate process parameters for EDM 

machining. 
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