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Abstract: In this paper, by taking full consideration of demographics, transfer from infectious to sus-
ceptible and contact heterogeneity of the individuals, we construct an improved Susceptible-Infected-
Removed-Susceptible (SIRS) epidemic model on complex heterogeneous networks. Using the next
generation matrix method, we obtain the basic reproduction number R0 which is a critical value and
used to measure the dynamics of epidemic diseases. More specifically, if R0 < 1, then the disease-free
equilibrium is globally asymptotically stable; if R0 > 1, then there exists a unique endemic equilib-
rium and the permanence of the disease is shown in detail. By constructing an appropriate Lyapunov
function, the global stability of the endemic equilibrium is proved as well under some conditions.
Moreover, the effects of three major immunization strategies are investigated. Finally, some numerical
simulations are carried out to demonstrate the correctness and validness of the theoretical results.
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1. Introduction

Infectious diseases are known to have caused huge devastation and loss of human life since ancient
times, and they have been posing a great threat, especially to developing countries. Over the last
two decades, human beings have witnessed numbers of major outbreaks of infectious diseases such as
SARS (2003), H7N9 (2013) in China, and the Ebola virus (2014) in West Africa [1,2]. These outbreaks
have huge negative impacts on people’s health and social stability. Hence, how to prevent the spread of
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diseases effectively becomes an important and hot issue. Meanwhile, more and more researchers have
been focusing on studying the transmission mechanism of epidemic diseases in recent years; see [3–7].

It has been widely agreed that the mathematical modeling of infectious diseases is an effective tool
and plays a crucial role in investigating the transmission mechanism and dynamics behaviors of var-
ious communicable diseases [8]. One of the pioneer works in this field was done by Kermack and
McKendrick [9–11], where the authors established two classic compartmental epidemic models called
susceptible-infected-recovered (SIR) and susceptible-infected-susceptible (SIS) models. From then
on, many mathematical models about the prevalence of diseases which descend from the two funda-
mental epidemic models have been widely used in investigating the spreading mechanics of epidemic
diseases [3, 5, 6, 12]. In SIR models, one usually supposes that recovered individuals could not be
infected again because infected individuals become permanently immune once recovered. However,
for some diseases (influenza, malaria), the recovered individuals may lose immunity after a while and
they will be susceptible again. By taking this factor into account, SIRS models are proposed and in-
vestigated [3, 5]. Moreover, in some bacterial agent diseases such as plague and venereal diseases,
the recovered individuals cannot keep immunity for a long time. Therefore, it is more reasonable
and appropriate to incorporate the case that a part of infected individuals may go back directly to the
susceptible class after some treatments into epidemiology modeling [5,6,12]. In [6], the authors estab-
lished an SIRS model with nonlinear incidence rate as well as transfer from infectious to susceptible
and investigated the global dynamics of the model. In these compartmental epidemic models, there is
always an underlying assumption that the population is sufficiently large and all individuals are mixed
uniformly. It means that every individual has the same possibility to contact others, whereas it cannot
reflect the realistic feature of the epidemic transmission mechanics completely since different individ-
uals may have different numbers of acquaintances, and the contact behaviors of individuals exhibit
heterogeneity [13,14]. Thus, it is essential to take the effect of contact heterogeneity into consideration
in investigating the transmission mechanics of epidemic diseases.

It is well known that complex networks provide a powerful framework for describing and quanti-
fying the topological structures of various social, economic and biological systems [15]. In particular,
the heterogeneity of contact patterns can be well characterized by degree fluctuation of heterogeneous
networks [16]. In view of this, the structures of complex network are embedded into the traditional
epidemic models, and the epidemic dynamics in complex networks have attracted increasing attention
and been studied extensively in recent years [17–27]. In 2001, Pastor-Satorras and Vespignani [20] pro-
posed and studied an SIS epidemic model in highly heterogeneous networks (i.e., scale-free networks)
and showed that a highly heterogeneous contact pattern can result in the absence of any epidemic
threshold for the first time, i,e., the threshold approaches zero in the limit of a large number of edges
and nodes, and even quite a small infectious rate can lead to a major epidemic outbreaks. This is a
new epidemic spreading phenomenon which is completely different from previous works. And this
result was proved rigorously by Wang and Dai in [21]. The dynamics of SIR model in heterogeneous
networks was also investigated in [23], and the authors found that the epidemic threshold will increase
with network size on finite networks. In [27], Huo et al. proposed a fractional SIR model with birth
and death rates on heterogeneous complex networks and obtained that the threshold value R0 deter-
mines the dynamics of the model. In order to investigate the heterogeneities of disease transmission
about SIRS models, Li et al. [25] proposed a new SIRS model with nonlinear infectivity as well as
birth and death rates on complex networks and obtained that the disease-free equilibrium is globally
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asymptotically stable when the basic reproduction number R0 < 1; when R0 > 1, then there exists a
unique endemic equilibrium which is globally asymptotically stable. In [24] and [18], the authors pro-
posed and investigated an SIRS epidemic model with infective individuals entering into the removed
or susceptible on complex network respectively. But both of them only focused on the threshold of the
epidemic models and the dynamics of equilibria were not discussed.

To the best of our knowledge, the factor of population turnover is not considered in most of afore-
mentioned models, and there are few studies [25, 27–30] about incorporating demographics into net-
work disease models. Inspired by the works of [18,24,25] and [28], in this paper, we shall establish an
improved SIRS model on complex heterogeneous networks by taking both demographics and transfer
from infectious to susceptible into consideration. Our main goal is to discuss the global epidemic dy-
namics of the model and provide some strategies to prevent the epidemic outbreaks. The remainder of
this article is organized as follows. A network-based SIRS model with demographics and transfer from
infectious to susceptible is proposed in Section 2. The basic reproduction number of the model and the
stability of equilibria are investigated in Section 3 and Section 4. In Section 5, the effects of three major
immunization strategies are investigated and compared. In Section 6, some numerical simulations are
given to support the theoretical analysis. Finally, conclusions are drawn in Section 7.

2. Epidemic model on networks

In this paper, we define the whole population as a finite size network. Every node of the network
represents an individual and the edges are the interactions among individuals. The degree k of a node
denotes the number of edges connected to the node. Let S k(t), Ik(t) and Rk(t) be the number of the
susceptible, infected and recovered nodes with degree k at time t, respectively, for k = 1, 2, ..., n, where
n is the maximal degree of the nodes among the network. The transmission sketch is shown in Figure 1.

Figure 1. Transition diagram for the SIRS epidemic model.

Based on the mean-field theory, the dynamics of the network-based model can be described by the
following differential equations
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

dS k(t)
dt

= b − λ(k)S k(t)Θ(t) − dS k(t) + γIk(t) + δRk(t),

dIk(t)
dt

= λ(k)S k(t)Θ(t) − (γ + d + α)Ik(t),

dRk(t)
dt

= αIk(t) − (d + δ)Rk(t),

(2.1)

where the parameter b denotes the number of newly born susceptible nodes with degree k per unit time;
λ(k) (degree-dependent) is the infected rate of a susceptible individual; d represents the death rate; γ
is the transfer rate from the infected class to the susceptible class; δ denotes the immunity loss rate; α
represents the recovery rate from infected individuals. The parameters b, d, λ(k), α, γ and δ are all
nonnegative by their epidemiological meaning. Θ(t) represents the probability that a randomly chosen
edge of a node degree k points to an infected node at time t and it satisfies the following equation.

Θ(t) =

n∑
i=1

P(i | k)
ϕ(i)

i
Ii(t)
Ni(t)

,

where P(i | k) represents the probability that a node with degree k is connected to a node with degree
i. In this paper, we investigate epidemic transmission on uncorrelated networks, then the probability is
considered independent of the connectivity of the node from which the link is emanating [20]. Hence
P(i | k) = iP(i)/〈k〉, where P(k) represents the probability of a randomly chosen node with degree k and∑n

k=1 P(k) = 1. 〈k〉 =
∑n

k=1 kP(k) is the average degree of the network. ϕ(i) represents the infectivity of
a node with degree i, that is, the mean number of edges from which a node with degree i can transmit
diseases [19]. Nk(t) = S k(t) + Ik(t) + Rk(t) denotes the number of nodes with degree k at time t.

Adding the three equations of model (2.1), we have dNk(t)
dt = b − dNk(t). Then Nk(t) = Nk(0)e−dt +

b
d (1 − e−dt). For the purpose of having a population of constant size, throughout this paper we always
assume that
(H1) S k(0) + Ik(0) + Rk(0) = Nk(0) = b

d .

Hence, we have S k(t) + Ik(t) + Rk(t) = Nk(t) = b
d for all t ≥ 0. Thus

Θ(t) =
1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)Ik(t).

For the practical consideration, the initial conditions of system (2.1) take the form

S k(0) > 0, Ik(0) ≥ 0, Rk(0) ≥ 0, Θ(0) > 0, k = 1, 2, ..., n. (2.2)

In this paper, beside the hypothesis (H1), we also need some hypotheses shown as below:
(H2) the infection rate is bounded, i.e., there exists two constants µ, ν > 0, such that 0 < µ ≤ λ(k) ≤ ν;
(H3) the network should be static, that is, the degree of each node is time invariant.

Now, we reveal some properties of solutions of system (2.1).

Lemma 2.1. Suppose (S 1(t), I1(t),R1(t), · · · , S n(t), In(t),Rn(t)) is a solution of system (2.1) with the
initial conditions (2.2). Then we have the following conclusion
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S k(t) > 0, Ik(t) ≥ 0, Rk(t) ≥ 0, for any k = 1, 2, ..., n and all t > 0.

Proof. Firstly, we prove Θ(t) > 0 for all t > 0. By the second equation of system (2.1), we have

dΘ(t)
dt

=
1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)[λ(k)S k(t)Θ(t) − (γ + d + α)Ik(t)]

=
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)S k(t)Θ(t) −
1
〈k〉

d
b

n∑
k=1

(γ + d + α)ϕ(k)P(k)Ik(t)

= Θ(t)[
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)S k(t) − (γ + d + α)].

(2.3)

Obviously, we have

Θ(t) = Θ(0) exp[−(γ + d + α)t +
1
〈k〉

d
b

∫ t

0

n∑
k=1

λ(k)ϕ(k)P(k)S k(s)ds].

Since Θ(0) > 0, one can obtain that Θ(t) > 0 for all t > 0.
Note that S k(0) > 0. Based on the fact of the first equation of system (2.1) and the continuity of

S k(t), we could find a sufficiently small t0 > 0 such that S k(t) > 0 for t ∈ (0, t0). We now prove that
S k(t) > 0 for all t > 0. Assume S k(t) > 0 is not always valid, then there exists i ∈ {1, 2, ...n} and the first
time t1 ≥ t0 > 0 such that S i(t1) = 0 and S i(t) > 0 for t ∈ (0, t1). From the second equation of system
(2.1), we have dIi(t)

dt > −(γ + d + α)Ii(t) for t ∈ (0, t1). Thus, Ii(t) > Ii(0)e−(γ+d+α)t ≥ 0 for t ∈ (0, t1).
Combining Ii(t) ≥ 0 for t ∈ (0, t1) with the third equation of system (2.1), we have dRi(t)

dt > −(d +

δ)Ri(t) for t ∈ (0, t1). Hence, one can obtain that Ri(t) > Ri(0)e−(d+δ)t for t ∈ (0, t1). By the continuity of
Ii(t) and Ri(t), we know Ii(t1) ≥ 0 and Ri(t) ≥ 0. Then the first equation of system (2.1) shows

dS i(t)
dt |t=t1= b + γIi(t1) + δRi(t1) ≥ b > 0.

So, one can find that S i(t) < S i(t1) for t ∈ (0, t1). Due to S i(t1) = 0, it contradicts to S k(t) > 0 obviously.
Therefore, S k(t) > 0 for all t > 0 and all k = 1, 2, ..., n. By similar discussions, we also have Ik(t) ≥ 0
and Rk(t) ≥ 0 for all t > 0. Therefore, this completes the proof. �

Hence, we only need to focus on the dynamics of solutions of system (2.1) in the following feasible
bounded region

Γ = {(S 1, I1,R1, · · · , S n, In,Rn) : S k > 0, Ik ≥ 0, Rk ≥ 0, S k + Ik + Rk =
b
d
, k = 1, 2, · · · , n}.

Remark 2.1. It’s remarkable that system (2.1) includes some special cases, if b = d = α = δ = 0,
system (2.1) turns into an SIS model [20]; if b = d = γ = 0, model (2.1) is an SIR model [23]; if γ = 0
and b = d, system (2.1) is an SIRS model [25].

Remark 2.2. In recent years, many different types of λ(k) and ϕ(k) have been studied. The most
common types for λ(k) is λ(k) = λk (see, [21,30]). For ϕ(k), one can see ϕ(k) = k is choosen in [18,30].
Furthermore, in [23], the authors adopt a general form of ϕ(k) = akα

1+vkα , where 0 ≤ α ≤ 1, a > 0 and
v ≥ 0. The types ϕ(k) = C (C is a constant) [22] and ϕ(k) = km (0 < m ≤ 1) [17] are discussed as well.
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3. Basic reproduction number and equilibria

In epidemiological investigations, the basic reproduction number R0 is widely used to measure
the epidemic potential.The term basic reproduction number represents the mean number of secondary
cases produced by a typical infectious individual during its entire infectious period in a completely
susceptible population [31, 32]. By the methods in [31], the transmission matrix F for the rate of
appearance of new infections and the transition matrix V for the transfer rate of individuals among
compartments around the disease-free equilibrium E0 are denoted as follows, respectively

F =


λ(1)ϕ(1)P(1)

〈k〉
λ(1)ϕ(2)P(2)

〈k〉 · · ·
λ(1)ϕ(n)P(n)

〈k〉
λ(2)ϕ(1)P(1)

〈k〉
λ(2)ϕ(2)P(2)

〈k〉 · · ·
λ(2)ϕ(n)P(n)

〈k〉
...

...
... · · ·

λ(n)ϕ(1)P(1)
〈k〉

λ(n)ϕ(2)P(2)
〈k〉 · · ·

λ(n)ϕ(n)P(n)
〈k〉

 ,
and

V =


γ + d + α 0 · · · 0

0 γ + d + α · · · 0
...

...
... · · ·

0 0 · · · γ + d + α

 .
Hence, the basic reproduction number R0 = ρ(FV−1) is the spectral radius of the next generation

matrix FV−1. By direct calculations, we have

R0 = ρ(FV−1) =
〈λ(k)ϕ(k)〉

(γ + d + α)〈k〉
,

where 〈λ(k)ϕ(k)〉 =
∑n

k=1 λ(k)ϕ(k)P(k).
Next, we will investigate the existence of equilibria of system (2.1).

Theorem 3.1. Consider system (2.1), then we have following results:
(i) There always exists a disease-free equilibrium E0 = ( b

d , 0, 0, · · · ,
b
d , 0, 0).

(ii) There is a unique endemic equilibrium E∗ = (S ∗1, I
∗
1,R

∗
1, · · · , S

∗
n, I
∗
n,R

∗
n) when R0 > 1, where

S ∗k =
(γ + d + α)
λ(k)Θ∗

I∗k , R∗k =
α

d + δ
I∗k ,

I∗k =
b(d + δ)λ(k)Θ∗

(d + δ)d + αdλ(k)Θ∗ + d(d + δ)(γ + d + α)

with Θ∗ = 1
〈k〉

d
b

∑n
k=1 ϕ(k)P(k)I∗k , k = 1, 2, · · · , n.

Proof. Clearly, E0 is always a disease-free equilibrium of system (2.1).
Now, let us consider the existence of E∗. Note that the equilibrium E∗ satisfies the following equalities

b − λ(k)S ∗kΘ
∗ − dS ∗k + γI∗k + δR∗k = 0,

λ(k)S ∗kΘ
∗ − (γ + d + α)I∗k = 0,

αI∗k − (d + δ)R∗k = 0.

(3.1)
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From the second and the third equations of (3.1), we have

S ∗k =
(γ + d + α)
λ(k)Θ∗

I∗k , (3.2)

R∗k =
α

d + δ
I∗k . (3.3)

Substituting (3.2) and (3.3) into the first equation of (3.1), one can obtain

I∗k =
b(d + δ)λ(k)Θ∗

d(d + δ + α)λ(k)Θ∗ + d(d + δ)(γ + d + α)
. (3.4)

Substituting (3.4) into the expression of Θ∗, we obtain a self-consistency equation about Θ∗.

Θ∗ =
1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)
b(d + δ)λ(k)Θ∗

d(d + δ + α)λ(k)Θ∗ + d(d + δ)(γ + d + α)
:= f (Θ∗). (3.5)

Obviously, Θ∗ = 0 is a solution of (3.5). Note that

f (1) <
1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)
b
d
≤ 1,

d f (Θ∗)
dΘ∗

=
1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)
b(d + δ)2λ(k)d(γ + d + α)

[d(d + δ + α)λ(k)Θ∗ + d(d + δ)(γ + d + α)]2 > 0,

d f 2(Θ∗)
dΘ∗2

= −2
1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)
b(d + δ)2λ2(k)d(γ + d + α)[d(d + δ + α)]

[d(d + δ + α)λ(k)Θ∗ + d(d + δ)(γ + d + α)]3 < 0.

If R0 > 1, then we have d f (Θ∗)
dΘ∗
|Θ∗=0 > 1. Consequently, the equation (3.5) has a unique nontrivial

solution Θ∗(Θ∗ ∈ (0, 1)). It means that there exists one and only one endemic equilibrium when
R0 > 1. This finishes the proof. �

Remark 3.1. From Theorem 3.1, we know that the existence of the endemic equilibrium depends onR0.
Obviously, R0 is in proportion to the heterogeneous parameter 〈λ(k)ϕ(k)〉

〈k〉 which is related to the topology
of the networks closely. We also find that R0 has nothing to do with the immunity loss rate δ. It seems
that the transfer rate γ and the recovery rate α have the same effects on R0, i.e., increasing the transfer
rate γ and the recovery rate α will decrease R0 .

4. Global dynamics of the model

In this section, we will consider the global stability of equilibria E0 and E∗. To begin with we will
discuss the local asymptotical stability of the disease-free equilibrium E0.

Theorem 4.1. The disease-free equilibrium E0 of system (2.1) is locally asymptotically stable when
R0 < 1 and is unstable when R0 > 1.
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Proof. As shown in Section 2, for the purpose of having a population of constant size, we assume that
the initial values always satisfy the hypothesis (H1). Then we can obtain S k(t)+Ik(t)+Rk(t) = Nk(t) = b

d .
Hence, system (2.1) can be reduced in the following form:

dIk(t)
dt

= λ(k)[
b
d
− Ik(t) − Rk(t)]Θ(t) − (γ + d + α)Ik(t),

dRk(t)
dt

= αIk(t) − (d + δ)Rk(t).
(4.1)

The Jacobian matrix of the disease-free equilibrium E0 of system (4.1) is given by

J =


A11 A12 A13 · · · A1n

A21 A22 A23 · · · A2n
...

...
...

... · · ·

An1 An2 An3 · · · Ann

 ,
where

Aii =

( λ(i)ϕ(i)P(i)
〈k〉 − (γ + d + α) 0

α −(d + δ)

)
, Ai j =

( λ(i)ϕ( j)P( j)
〈k〉 0
0 0

)
.

By induction, the characteristic equation can be shown as follows

(x + γ + d + α)n−1(x + d + δ)n[(x + γ + d + α) −
1
〈k〉

n∑
k=1

λ(k)ϕ(k)P(k)] = 0. (4.2)

It’s obvious that J has n− 1 negative eigenvalues that equal to −(γ + d + α) and n negative eigenvalues
that equal to −(d + δ). The 2n-th eigenvalue completely depends on

(x + γ + d + α) −
1
〈k〉

n∑
k=1

λ(k)ϕ(k)P(k) = 0, i.e., x = (γ + d + α)(R0 − 1).

When R0 < 1, then x < 0; when R0 > 1, then x > 0. Consequently, E0 is locally asymptotically stable
if R0 < 1 and is unstable if R0 > 1. The proof is complete. �

Next, we proceed to study the global attractivity of E0. For this purpose, we need the following
results.

Lemma 4.1. [33] If a > 0, b > 0, and dx(t)
dt ≤ b − ax, when t ≥ 0 and x(0) ≥ 0, then lim sup

t→∞
x(t) ≤ b

a .

We are now in a position to establish the following results about the global asymptotical stability of
the disease-free equilibrium E0 by employing above lemma.

Theorem 4.2. The disease-free equilibrium E0 of system (2.1) is globally asymptotically stable when
R0 < 1.
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Proof. Equation (2.3) implies that

dΘ(t)
dt

= Θ(t)[
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)(
b
d
− Ik(t) − Rk(t)) − (γ + d + α)]

≤ Θ(t)[
〈λ(k)ϕ(k)〉
〈k〉

− (γ + d + α) −
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)Ik(t)]

≤ Θ(t)[(γ + d + α)(R0 − 1) − µΘ(t)]
= Θ(t)(r − µΘ(t)),

(4.3)

where r = (γ + d + α)(R0 − 1), it follows from R0 ≤ 1 that r ≤ 0.
(i) if r = 0, then we have dΘ(t)

dt ≤ −µΘ2(t). Using following comparison equation
dx(t)

dt
= −µx2(t),

x(0) = Θ(0).

Obviously, we can see that Θ(t) ≤ x(t) =
Θ(0)

1+µΘ(0)t , and hence lim
t→∞

Θ(t) = 0.
(ii) if r < 0, consider the comparison equation

dy(t)
dt

= y(t)(r − µy(t)),

y(0) = Θ(0).

By using the comparison principle, one can obtain Θ(t) ≤ y(t) = rcert

1+cµert , where c =
Θ(0)

r−µΘ(0) . Therefore,
lim
t→∞

Θ(t) = 0.
From (i) and (ii), we have

lim
t→∞

1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)Ik(t) = 0.

Since ϕ(k) > 0 and P(k) > 0 for all k, then we have lim
t→∞

Ik(t) = 0.
Next, we will prove lim

t→∞
Rk(t) = 0. Owing to lim

t→∞
Ik(t) = 0, then for any given sufficiently small

constant ε > 0, there exists t1 > 0 such that 0 ≤ Ik(t) ≤ ε for t > t1. According to the third equation of
system (2.1), we have

dRk(t)
dt

≤ αε − (d + δ)Rk(t).

By Lemma 4.1, we obtain that lim sup
t→+∞

Rk(t) ≤ α
(d+δ)ε. Setting ε → 0, then lim sup

t→+∞

Rk(t) ≤ 0, and hence

lim
t→∞

Rk(t) = 0.

Finally, due to S k(t) = b
d − Ik(t) − Rk(t) we have lim

t→∞
S k(t) = b

d . This implies that the disease-free
equilibrium E0 of system (2.1) is globally attractive whenR0 ≤ 1. Note that E0 is locally asymptotically
stable if R0 < 1 by Theorem 4.1. Therefore, we obtain that E0 is globally asymptotically stable if
R0 < 1. This completes the proof. �

In the following, we will prove the persistence of the disease by employing Theorem 4.6 in [34].
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Theorem 4.3. The disease is permanent when R0 > 1, i.e., there exists a ζ > 0, such that

lim inf
t→∞

n∑
k=1

P(k)Ik(t) ≥ ζ > 0.

Proof. Define

x̃t = (S 1(t), I1(t), R1(t), · · · , S n(t), In(t), Rn(t)),

Γ = {xt : S k(t), Ik(t), Rk(t) ≥ 0, S k(t) + Ik(t) + Rk(t) =
b
d
, k = 1, 2, · · · , n},

X0 = {xt ∈ Γ,

n∑
k=1

P(k)Ik(t) > 0},

∂X0 = Γ\X0.

It is obvious that Γ is positively invariant with respect to system (2.1). Note that Θ(0) > 0, one can
deduce that Ik(0) > 0 for some k and

∑n
k=1 P(k)Ik(0) > 0 for all k. Owing to

d
∑n

k=1 P(k)Ik(t)
dt

=

n∑
k=1

P(k)
dIk(t)

dt
≥ −(γ + d + α)

n∑
k=1

P(k)Ik(t),

then we have
n∑

k=1

P(k)Ik(0)e−(γ+d+α)t > 0.

Thus, X0 is positively invariant as well. Furthermore, there exists a compact set B in which all solutions
of (2.1) initiated in Γ will enter and remain forever after. The compactness condition (C4.2) for the set
B in [34] is verified easily. Let

M∂ = {x̃0 : x(t, x̃0) ∈ ∂X0, t ≥ 0},

Ω = ∪{ω(x̃0) : x̃0 ∈ M∂},

where x̃0 = (S 1(0), I1(0),R1(0), · · · , S n(0), In(0),Rn(0)), ω(x̃0) is the omega limit set of the solutions of
system (2.1) starting at x̃0 ∈ Γ. Restricting system (2.1) on M∂, we obtain that

dS k(t)
dt

= b − dS k(t) + δRk(t),

dIk(t)
dt

= −(γ + d + α)Ik(t),

dRk(t)
dt

= −(d + δ)Rk(t).

(4.4)

It is clear that system (4.4) has a unique equilibrium E0 in Γ, and E0 is also the unique equilibrium
of system (2.1) in M∂. Then, we can easily prove that E0 is globally asymptotically stable. Therefore
Ω = {E0}. E0 is a covering of Ω, which is isolated and acyclic (there exists no nontrivial solution in
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M∂ which links E0 to itself). Finally, to complete the proof, we only need to show that E0 is a weak
repeller for X0, i.e.

lim sup
t→∞

d(Ψ(t; x̃0), E0) > 0, (4.5)

where Ψ(t; x̃0) is an arbitrarily solution starting in x̃0 ∈ X0. In order to prove (4.5), we need to verify
W s(E0) ∩ X0 = ∅ by the method in [35], where W s(E0) is the stable manifold of E0. Assume it is not
true, then there exists a solution x̃t ∈ X0, such that

lim
t→∞

S k(t) =
b
d
, lim

t→∞
Ik(t) = 0, lim

t→∞
Rk(t) = 0. (4.6)

Hence, for any ξ > 0, there exists a T > 0 such that for all t > T

b
d
−
ξ

2
< S k(t) <

b
d

+
ξ

2
, 0 ≤ Ik(t) <

ξ

2
, 0 ≤ Rk(t) <

ξ

2
.

Since R0 =
〈λ(k)ϕ(k)〉

(γ+d+α)〈k〉 > 1, namely 〈λ(k)ϕ(k)〉
〈k〉 − (γ + d + α) > 0, then we can choose a sufficiently small

ξ > 0, such that d
b
〈λ(k)ϕ(k)〉
〈k〉 ( b

d − ξ) − (γ + d + α) > 0.
Let L(t) = Θ(t), obviously, L(t) is bounded and the derivative of L along the solution is

dL(t)
dt

=
1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)[λ(k)S k(t)Θ(t) − (γ + d + α)Ik(t)]

= Θ(t)[
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)S k(t) − (γ + d + α)]

= Θ(t)[
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)(
b
d
− Ik(t) − Rk(t)) − (γ + d + α)]

> Θ(t)[
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)(
b
d
− ξ) − (γ + d + α)].

Due to
σ =

d
b
〈λ(k)ϕ(k)〉
〈k〉

(
b
d
− ξ) − (γ + d + α) > 0,

then we have Θ(t) > Θ(0)eσt. Hence L(t) = Θ(t) → +∞ as t → +∞, which is inconsistent with the
boundedness of L(t). This proof is complete. �

Finally, we will further show that the endemic equilibrium E∗ is globally asymptotically stable by
constructing a suitable Lyapunov function.

Theorem 4.4. If R0 > 1 and δ > γ, then the endemic equilibrium E∗ of system (2.1) is globally
asymptotically stable.

Proof. system (2.1) can be written as

dS k(t)
dt

= bΛ − λ(k)S k(t)Θ(t) − (d + γ)S k(t) + (δ − γ)Rk(t),

dIk(t)
dt

= λ(k)S k(t)Θ(t) − (γ + d + α)Ik(t),

dRk(t)
dt

= αIk(t) − (d + δ)Rk(t),

(4.7)
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where Λ = (1 +
γ

d ), and the components of endemic equilibrium E∗ satisfy the following equations
bΛ − λ(k)S ∗kΘ

∗ − (d + γ)S ∗k(t) + (δ − γ)R∗k(t) = 0,
λ(k)S ∗kΘ

∗ − (γ + d + α)I∗k = 0,
αI∗k − (d + δ)R∗k = 0.

(4.8)

For the second equation of (4.8), multiplying by ϕ(k)P(k) and summing both sides with respect to k,
we have

γ + d + α =
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)S ∗k. (4.9)

Submitting I∗k (t) = b
d − S ∗k − R∗k into the third equation of (4.8), then we obtain

αb
d

= αS ∗k + (α + d + δ)R∗k. (4.10)

Now we investigate a non-negative solution (S 1(t), I1(t),R1(t), · · · , S n(t), In(t),Rn(t)) of system (2.1).
Motivated by Li et al. [25], we consider the following Lyapunov function

V(t) =
1
2

n∑
k=1

{ρ1(k)(S k(t) − S ∗k)2 + ρ2(k)(Rk(t) − R∗k)2} + (Θ(t) − Θ∗ − Θ∗ ln
Θ(t)
Θ∗

),

where ρ1(k) =
dϕ(k)P(k)

b〈k〉S ∗k
> 0 and ρ2(k) =

δ−γ

α
ρ1(k) > 0. Clearly, V(t) > 0 except at E∗, and taking the

derivative of V(t) along the positive solution of (4.7), it follows that

dV(t)
dt

=

n∑
k=1

{ρ1(k)(S k(t) − S ∗k)
dS k(t)

dt
+ ρ2(k)(Rk(t) − R∗k)

dRk(t)
dt
} +

Θ(t) − Θ∗

Θ(t)
dΘ(t)

dt

=

n∑
k=1

{ρ1(k)(S k(t) − S ∗k)[bΛ − λ(k)S k(t)Θ(t) − (d + γ)S k(t) + (δ − γ)Rk(t)]

+ ρ2(k)(Rk(t) − R∗k)[
αb
d
− αS k(t) − (α + d + δ)Rk(t)]}

+
Θ(t) − Θ∗

Θ(t)
(

1
〈k〉

d
b

n∑
k=1

ϕ(k)P(k)[λ(k)S k(t)Θ(t) − (γ + d + α)Ik(t)]

=

n∑
k=1

[−ρ1(k)(λ(k)Θ + d + γ)(S k(t) − S ∗k)2 − ρ1(k)λ(k)S ∗k(Θ(t) − Θ∗)(S k(t) − S ∗k)

+ (δ − γ)ρ1(k)(S k(t) − S ∗k)(Rk(t) − R∗k) − αρ2(k)(S k(t) − S ∗k)(Rk(t) − R∗k)

− ρ2(k)(α + d + δ)(Rk(t) − R∗k)2] +
1
〈k〉

d
b

n∑
k=1

λ(k)ϕ(k)P(k)(S k − S ∗k)(Θ(t) − Θ∗)

= −

n∑
k=1

[ρ1(k)(λ(k)Θ(t) + d + γ)(S k(t) − S ∗k)2 + ρ2(k)(α + d + δ)(Rk(t) − R∗k)2]

≤ 0.
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Therefore, dV(t)
dt = 0 if and only if S k = S ∗k, Ik = I∗k , Rk = R∗k for k = 1, 2, · · · , n. It means that the

largest compact invariant subset contained in the set { dV(t)
dt = 0} is the singleton {E∗}. From the Lasalle

Invariance Principle [36], one can obtain that the endemic equilibrium E∗ is globally asymptotically
stable if R0 > 1 and δ > γ. This completes the proof. �

5. Immunization strategies

From Section 3 and Section 4, we know the basic reproduction number R0 is a key parameter which
determines the global dynamics of the epidemic model, and if the basic reproduction number R0 can
be reduced to a value less than one, the epidemic disease will die out. Moreover, immunization is
one of effective ways in controlling preventable diseases [37–40] by reducing the basic reproduction
number. However, it is always impossible to vaccinate all individuals in reality because of the high
costs and effort. Therefore, in this section we will discuss the impacts of three immunization strategies
(i.e., the random immunization, the targeted immunization and the acquaintance immunization) about
system (2.1) on the heterogenous networks.

5.1. Random immunization

Random immunization is the simplest immunization strategy which vaccinates a fraction of the
population without selectivity. Let p (0 < p < 1) be the immunization rate, then system (2.1) can be
written as 

dS k(t)
dt

= b − λ(k)(1 − p)S k(t)Θ(t) − dS k(t) + γIk(t) + δRk(t),

dIk(t)
dt

= λ(k)(1 − p)S k(t)Θ(t) − (γ + d + α)Ik(t),

dRk(t)
dt

= αIk(t) − (d + δ)Rk(t).

(5.1)

Through similar derivations in Section 3, we obtain the basic reproduction number Rr
0 for system (5.1)

Rr
0 = (1 − p)

〈λ(k)ϕ(k)〉
(γ + d + α)〈k〉

= (1 − p)R0.

Then, similar results are obtained.

Theorem 5.1. Assume R0 > 1. Define pc = 1 − 1
R0

, then
(i) If p > pc i.e. Rr

0 < 1, then the disease free equilibrium of system (5.1) is globally asymptotically
stable. That is to say, the disease will die out ultimately.
(ii) If 0 < p < pc (1 < Rr

0 < R0), then there always exists a unique endemic equilibrium E∗r of system
(5.1) which is globally asymptotically stable when δ > γ. That indicates that the random immunization
is effective, but cannot eliminate the disease in the network.

5.2. Targeted immunization

There is a fact that random immunization strategy ignores the heterogeneous connectivity of the
network. In order to take this factor into account, the targeted immunization strategy was proposed
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[37,38]. This immunization strategy is to immunize the most highly connected nodes because they are
vulnerable to selective attacks in the network. Assuming that all nodes with k ≥ kt will be immunized,
where kt is the upper threshold. Then the immunization rate pk can be denoted as

pk =

{
1,
0,

k ≥ kt,

k < kt.

Then, system (2.1) becomes

dS k(t)
dt

= b − λ(k)(1 − pk)S k(t)Θ(t) − dS k(t) + γIk(t) + δRk(t),

dIk(t)
dt

= λ(k)(1 − pk)S k(t)Θ(t) − (γ + d + α)Ik(t),

dRk(t)
dt

= αIk(t) − (d + δ)Rk(t).

(5.2)

By similar derivations in Section 3, we obtain the basic reproduction number Rt
0 for system (5.2)

Rt
0 =

1
(γ + d + α)

〈λ(k)ϕ(k)〉 − 〈pkλ(k)ϕ(k)〉
〈k〉

= R0 −
〈pkλ(k)ϕ(k)〉

(γ + d + α)〈k〉
. (5.3)

Let p̄ =
∑n

k=1 pkP(k) be the average immunization rate, then

〈pkλ(k)ϕ(k)〉 = 〈pk〉〈λ(k)ϕ(k)〉 + Cov(pk, λ(k)ϕ(k)) = p̄〈λ(k)ϕ(k)〉 + 〈(pk − p̄)(λ(k)ϕ(k) − 〈λ(k)ϕ(k)〉)〉,

where Cov(·, ·) represents the covariance of two variables. For appropriately small kt, pk − p̄ and
λ(k)ϕ(k) − 〈λ(k)ϕ(k)〉 have the same signs, except that k’s where pk = p̄ or λ(k)ϕ(k) = 〈λ(k)ϕ(k)〉, then
Cov(pk, λ(k)ϕ(k)) > 0. That is to say for some kt, 〈pkλ(k)ϕ(k)〉 > 〈pk〉〈λ(k)ϕ(k)〉. Hence, we have
following conclusions.

Theorem 5.2. Consider system (5.2), then we have following results:
(i) If Rt

0 < 1 < R0, then the disease free equilibrium of system (5.2) is globally asymptotically stable,
i.e. the disease can be controlled by the targeted immunization strategy.
(ii) If 1 < Rt

0 < R0, there will always exists a unique endemic equilibrium E∗t of system (5.2), which is
globally asymptotically stable when δ > γ.
(iii) For some kt, 〈pkλ(k)ϕ(k)〉 > 〈pk〉〈λ(k)ϕ(k)〉, then Rt

0 < R
r
0. This shows that the targeted immuniza-

tion is more effective than random immunization.

5.3. Acquaintance immunization

Since the targeted immunization requires us to know the global connectivity information of each
node in networks, and it is always much difficult to carry out in reality. In order to deal with this
dilemma, R. Cohen, S. Havlin and D. Ben-Avraham [37] proposed the acquaintance immunization
scheme for the immunization of random acquaintances of random nodes. Specifically, choose a fraction
q of N nodes randomly, the probability that a particular node with degree k is selected for immunization
is kP(k)/(N〈k〉) [37, 41]. Hence, substituting pk = pN · kP(k)/(N〈k〉) = kP(k)(p/〈k〉) to (5.3), then the
basic reproduction number for acquaintance immunization is

Ra
0 =

1
(γ + d + α)

〈λ(k)ϕ(k)〉 − 〈kP(k)(p/〈k〉)λ(k)ϕ(k)〉
〈k〉

= R0 −
p〈kP(k)λ(k)ϕ(k)〉
(γ + d + α)〈k〉2

.

This implies that acquaintance immunization scheme is effective as well.
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Theorem 5.3. For system (5.2), we have following results:
(i) If Ra

0 < 1 < R0, then the disease can be controlled by this immunization scheme, i.e., the disease
will be eradicated from the network ultimately.
(ii) If 1 < Ra

0 < R0, then the disease is uniformly persistent in the network and there always exists a
unique endemic equilibrium E∗a.

6. Numerical simulation

In this section, we present several numerical simulations to demonstrate the correctness and effec-
tiveness of the main results. These simulations are based on scale-free networks. We first start with a
graph with 5 vertexes, a node with one edge is added into the graph in each time step, and then a BA
scale-free network G with 100 nodes is obtained by using preferential attachment mechanism in [42].
There will give several numerical examples with different infectivities ϕ(k) to illustrate the theoretical
analysis.

6.1. Global stability of disease-free equilibrium E0

In Figures 2, 3 and 4, we adopt the infected rate λ(k) = βk and give infectivity ϕ(k) three types such
as linear, constant and nonlinear infectivity to verify the stability of the disease-free equilibrium.

Case i. Let n = 11, ϕ(k) = k, b = 2, γ = 0.04, β = 0.01, d = 0.025, α = 0.04, δ = 0.03 and the
initial values: S k(0) = 40, Ik(0) = 30, Rk(0) = 10. Then we have R0 = 0.8884 < 1. From our results,
the disease will die out if R0 = 0.8884 < 1, and the time evolution of the densities of each state for the
initial value is drawn in Figure 2. It agrees with Theorem 4.2.

a b c

Figure 2. The time evolution of the number of each states for Case i, where n = 11, λ(k) =

0.01k, ϕ(k) = k, b = 2, γ = 0.04, d = 0.025, α = 0.04 and δ = 0.03.

Case ii. Choose n = 13, ϕ(k) = 4 and other parameters are the same as in Case i. Then one
can obtain R0 = 0.2857 < 1. It follows from Theorem 4.2, disease-free equilibrium E0 is globally
asymptotically stable. The Figure 3 shows the time evolution of the number of each state for the initial
value.

Case iii. We choose n = 13, the nonlinear infectivity ϕ(k) = k0.5 and other parameters are the same
as in Case i as well. Then R0 = 0.2369 < 1, and by Theorem 4.2 the disease-free equilibrium E0 is
globally asymptotically stable. The time evolution of the densities of each state for the initial value is
shown in Figure 3.
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a b c

Figure 3. The time evolution of the densities of each states for Case ii, where the parameter
n = 13, ϕ(k) = 4 and other parameters are the same as in Case i.

a b c

Figure 4. The time evolution of the number of each states for Case iii, where the parameter
n = 13, ϕ(k) = k0.5 and other parameters are the same as in Case i.

6.2. Global stability of endemic equilibrium E∗

Next, in the same network architecture in Subsection 6.1, we will verify the global asymptotical
stability of the endemic equilibrium E∗. Similarly, we choose λ(k) = βk and give three types of the
infectivity ϕ(k) .

Case iv. We make n = 13, ϕ(k) = k, b = 2, γ = 0.02, β = 0.06, d = 0.025, α = 0.04, δ = 0.03
and the initial value: S k(0) = 40, Ik(0) = 30, Rk(0) = 10. We obtain R0 = 5.9765 > 1, which implies
that E∗ is global asymptotical stable from Theorem 4.4. The time evolution of the densities of each
state for the initial value is depicted in Figure 5.

Case v. Setting n = 15, ϕ(k) = 4 and other parameters are the same as in Case iv. Then one
can verify R0 = 2.1176 > 1. Hence it follows from Theorem 4.4 that the endemic equilibrium E∗ is
globally asymptotically stable. The Figure 6 shows the time evolution of the densities of each state for
the initial values.

Case vi. We choose n = 13, the nonlinear infectivity ϕ(k) = k0.5 and other parameters are the same
as in Case iv as well. Then we obtain R0 = 1.7420 > 1, and the time evolution of the densities of each
state for the initial value is presented in Figure 7. It agrees with Theorem 4.4.

As shown in the Figures 5, 6 and 7, it follows from Theorem 4.4 that the endemic equilibrium E∗ is
globally asymptotically stable when R0 > 1 and δ > γ. In addition, if we choose n = 14, λ(k) = βk,
ϕ(k) = k, b = 2, γ = 0.04, β = 0.06, d = 0.025, α = 0.04 and δ = 0.03, then we can obtain
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that R0 = 4.1789 > 1 and δ ≤ γ hold. The time evolution of the densities of each state is shown in
Figure 8. It seems that the endemic equilibrium E∗ is also globally attractive. However, we could not
give a rigorous proof for the global attractivity of E∗ when R0 > 1 and δ ≤ γ, which we leave as our
future work.

a b c

Figure 5. The time evolution of the number of each states for Case iv, where n = 13, λ(k) =

0.06k, ϕ(k) = k, b = 2, γ = 0.02, d = 0.025, α = 0.04 and δ = 0.03.

a b c

Figure 6. The time evolution of the number of each states for Case v, where n = 15, ϕ(k) = 4
and other parameters are the same as in Case iv.

a b c

Figure 7. The time evolution of the number of each states for Case vi. The parameter
n = 13, ϕ(k) = k0.5 and other parameters are the same as in Case iv.

.
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a b c

Figure 8. The time evolution of the number of each states for the case of R0 > 1 and δ ≤ γ.

7. Conclusion

By incorporating demographics and transfer from infectious to susceptible individuals into network
disease models, we propose an improved SIRS model on complex networks in this paper. We derive
the basic reproduction number R0 by using the next generation matrix method and obtain that the basic
reproduction number R0 determines not only the existence of the endemic equilibrium E∗ but also the
global stability of equilibria E0 and E∗, i.e., the disease-free equilibrium E0 is globally asymptotically
stable when R0 < 1; when R0 > 1, there exists a unique endemic equilibrium E∗ and the disease is
permanent on the network, which indicates that reducing the basic reproduction number R0 below one
could eradicate the disease. Meanwhile, by employing the method of Lyapunov function, we prove
that if R0 > 1 and δ > γ, the endemic equilibrium E∗ is globally asymptotically stable. Compared with
the model in literature [27], our model is more general by considering the degree-related infection rate
λ(k) and the general form of infectivity ϕ(k). At the same time, the global dynamics of the disease-free
equilibrium and the endemic equilibrium under different forms of infectivity are discussed by some
numerical simulations. It also confirms the correctness of the theoretical analysis. In addition, from
our numerical simulations, the endemic equilibrium E∗ is globally asymptotically stable when R0 > 1
with δ < γ which is not proved in the present paper and will be investigated in further exploration.

Some new insights in this paper may help us to understand the spreading of diseases and provide
some effective intervening measures to prevent the epidemic outbreaks. As one can see, the basic re-
production number R0 is an important index in disease control, which is closely related to the topology
of the networks and some model parameters. One can obtain that increasing the transfer rate γ and
the recovery rate α will decrease R0 to restrict the spreading of the epidemic diseases. Moreover, it is
worth noting that R0 is not dependent on the immunity loss rate δ, which indicates that strengthening
the treatment is very important. According to the investigation on three immunization strategies about
system (2.1) on the heterogenous networks, we can find that immunizations are also effective ways
in controlling diseases transmission by decreasing R0. Furthermore, one can see that the targeted im-
munization is more effective than random immunization, and the acquaintance immunization is more
economical and more easier to be carried out.
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