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Abstract: In this paper, we study the problem of the robust blood glucose tracking. Tracking here
means that the error between a state variable of a system under control and its desired time-varying
reference converges to zero over time. Robustness here means that a controller designed for a system
can tolerate a small variation of the system parameters. Since the parameters in the blood glucose
regulation system differ in people, such a robust controller is useful in the insulin pump technology:
an insulin pump equipped with such a robust controller could be used in a group of people. Thus, in
our study, parameter uncertainties are introduced into a mathematical model of the blood glucose reg-
ulation system. Using an actual blood glucose level as feedback and an exogenous glucose input and
a desired glucose reference as feedforward, we design a robust feedback and feedforward controller,
which drives the blood glucose to track the desired time-varying glucose reference for any small un-
certainties. Numerical simulations with published experimental blood glucose data are conducted to
further confirm our theoretical results.

Keywords: diabetes; robust blood glucose tracking; feedback and feedforward control; parameter
uncertainty; internal model

1. Introduction

Blood glucose needs to be maintained within a narrow range, for example, from 3.6 to 6.0 mmol/l
(65 to 108 mg/dl) for the fasting people without diabetes. This narrow range differs in people and
in time. A high blood glucose concentration outside the range is a symptom of diabetes, one of the
prevalent diseases affecting millions of people worldwide. A peptide hormone insulin is required to
interact with glucose to achieve this goal.

The interaction between blood glucose and insulin involves multiple feedback control mechanisms
and is of extremely high complexity. Here we give a very basic description about it. Glucose comes
from food and liver, and utilized by brain and nerve cells (insulin-independent) via the glucose trans-
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porter 3 (GLUT3) or by tissue cells such as muscle, kidney, and fat cells (insulin-dependent) via the
glucose transporter 4 (GLUT4). Glucose is transported into and out of liver cells by the concentration-
driven GLUT2, which is insulin-independent [17]. In response to a low blood glucose level, the α cells
of the pancreas produce the hormone glucagon. The glucagon initiates a series of activations of kinases,
and finally leads to the activation of the glycogen phosphorylase, which catalyzes the breakdown of
glycogen into glucose [14]. In addition, the series of activations of kinases also result in the inhibition
of glycogen synthase and then stop the conversion of glucose to glycogen. In response to a high blood
glucose level, the β cells of the pancreas secrete insulin [15, 35, 36]. Insulin triggers a series of reac-
tions to activate glycogen synthase, which catalyzes the conversion of glucose into glycogen [16, 21].
Insulin also initiates a series of activations of kinases in tissue cells to lead to the redistribution of the
glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane [13]. Once at
the cell surface [8, 32], GLUT4 transports glucose into the muscle or fat cells.

Mathematical models for the blood glucose regulation system are required for integrating a glucose
monitoring system into insulin pump technology to form a closed-loop insulin delivery system, the
so-called “artificial pancreas” (see Hovorka [18], Panteleon et al. [33], Steil et al. [38]). To make
this artificial pancreas as close as possible to the natural pancreas, many mathematical models about
the interaction between blood glucose and insulin have been proposed. In many of these models, the
compartmental modeling approach has been used. In the 1960’s, Ackerman et al. [1, 2] proposed a
simplified compartmental model of two linear ordinary differential equations for the glucose-tolerance
test. This model lumped the large number of kinetic parameters into a much smaller number which
can, at least in part, characterize the human glucose regulatory system. In the 1970’s, Bergman et al.
[4, 5, 6, 7] proposed a minimal compartmental model of nonlinear ordinary differential equations. It
was assumed that the blood glucose and hormone insulin are contained in two different compartments
and interact with each other. The plasma insulin is secreted from the endocrine system under the
stimulation of the blood glucose and enters a “remote compartment”, where it is active in accelerating
glucose utilization. Then the dynamics of the blood glucose, plasma insulin, and the insulin in the
remote compartment was modeled by a system of three nonlinear ordinary differential equations. In
the 1990’s, to determine whether the oscillations of insulin and blood glucose could result from the
feedback loops between insulin and glucose, Sturis et al. [39, 40] developed a parsimonious model
including the major mechanisms involved in glucose regulation. This model comprises two major
negative feedback loops describing the effects of insulin on glucose utilization and glucose production,
respectively, and both loops include the stimulatory effect of glucose on insulin secretion. Then this
model consists of six nonlinear ordinary differential equations, three of which are used to model a
time delay for the effect of insulin on glucose production and a sluggish effect of insulin on glucose
utilization. On the basis of Sturis et al.’s model , Li et al. [23] introduced two explicit time delays
and proposed a more robust alternative model for better understanding the glucose-insulin endocrine
metabolic regulatory system and the ultradian insulin secretory oscillations for the cases of continuous
enteral nutrition and constant glucose infusion. More complicated compartmental models proposed by
Hovorka et al. [18], Liu et al. [24, 25, 27], Man et al. [29, 30, 31], and Sorensen [37] have considered
labeling more compartments for better understanding the behavior of different parts of the body. To
assess the liver ability to extract insulin, Toffolo et al. [41, 42], proposed a minimal model of insulin
delivery and kinetics by combining the classical C-peptide minimal model. In the 2010’s, Vahidi et
al. [45, 46] developed a model for type II diabetes, based on a detailed compartmental physiological
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Figure 1. Feedback and feedforward control flow diagram. For a detailed description, see
the text.

model proposed by Sorensen [37] for a healthy human body. There have been a huge set of references
on the modeling research and it is hopeless to mention all of them.

In all these models, no parameter uncertainties were introduced. The parameter uncertainties here
means that a parameter may vary in a neighborhood of its nominal value. This can happen in prac-
tice. For instance, an estimation error may be introduced when a model parameter is estimated. In
addition, parameter values may vary slightly from person to person. Therefore, it is of practical in-
terest to introduce parameter uncertainties into a model. As far as the robust tracking is concerned,
the robustness against the parameter uncertainties means that a feedback and feedforward controller
should be designed in a way such that it can tolerate the parameter variation in a small neighborhood
of their nominal values. That is, even though the parameters have a small change, the controller can
still achieve its tracking goal. Such a robust problem may be solved by only a robust control design
method and other methods such as the sensitivity analysis, bootstrapping to quantify parameter ranges,
and stochastic modeling might not be relevant.

As a first attempt in this direction, we introduce parameter uncertainties into the model proposed by
Bergman et al. [4, 5]. Although this model is simple and consists of only three differential equations,
one equation for the glucose dynamics, one equation for the effect of the remote insulin on glucose,
and the other equation for the hormone insulin dynamics, it can simulate well the major biological
dynamics about the interaction between glucose and insulin, as evidenced in the numerous literature
(see. e.g., [4, 5, 6, 7, 11]). It has been widely used and further updated later (see, e.g., [10, 18, 20, 23,
24, 39, 40, 41]).

Furthermore, we also include a time-dependent exogenous glucose input J from food through the
intestine in this model and assume that the desired glucose reference r to be tracked is time-dependent,
as described in Figure 1. Then we design a robust feedback (using an actual glucose concentration g)
and feedforward (using the exogenous glucose input J and the desired glucose reference r) controller
u(g, r, J) such that the glucose concentration asymptotically tracks the time-varying glucose reference
for any small uncertainties. Numerical simulations conducted with published experimental blood glu-
cose data show that our controller is effective in achieving the blood glucose tracking and agree with
our theoretical results.
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2. Formulation of a model with parameter uncertainties

In the 1970’s, Bergman et al. [4, 5] proposed a mathematical model for the blood glucose regulation
system. To establish such a model, they made a simplified assumption. The blood glucose is produced
from food through the intestine. The blood glucose and hormone insulin are contained in two different
compartments and interact with each other. The blood glucose can be converted into the liver glycogen
and used by the tissue metabolism with or without the help of insulin. The plasma insulin is secreted
from the endocrine system under the stimulation of the blood glucose and enters a “remote compart-
ment”, where it is active in accelerating glucose utilization. It is used up by the insulin metabolism.
Under this assumption, the dynamics of the blood glucose and insulin was modeled by the following
system of nonlinear differential equations [5]:

dg
dt

= −m1g − hag + J, (2.1)

dha

dt
= −m2ha + m3h, (2.2)

dh
dt

= −m4h + u. (2.3)

In the above equations, g and h denote concentrations of blood glucose and plasma insulin, respec-
tively, ha is the effect of the remote insulin on glucose, J is a rate of the exogenous glucose input
from the intestine, u is a rate of insulin secreted from the endocrine system or infused externally, and
m1,m2,m3,m4 are positive rate constants. The biological meaning of these rate constants are explained
in the Table 1. Because the glucose needs to be monitored and regulated, we introduce an output
equation:

y = g. (2.4)

To maintain the blood glucose at a normal level of about 6 mmol/l, a basal exogenous glucose input
Gb is required [24, 47]. Thus the blood glucose input J could be split into two parts:

J = Gb + Gd, (2.5)

where Gd can be treated as a glucose disturbance.
In what follows, (ḡ, h̄a, h̄, ū) denotes the equilibrium of the system (2.1)-(2.3) without the glucose

disturbance. That is, they are solutions of the following steady state system:

0 = −m1ḡ − ḡh̄a + Gb, (2.6)
0 = −m2h̄a + m3h̄, (2.7)
0 = −m4h̄ + ū. (2.8)

In practice, an estimation error may be introduced when a model parameter is estimated. In addition,
the values of the parameters m1,m2,m3,m4 may vary slightly from person to person. Therefore, it is
reasonable to introduce parameter uncertainties into the system (2.1)-(2.3):

dg
dt

= −(m1 + w1)g − gha + w1ḡ + Gb + Gd, (2.9)
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dha

dt
= −(m2 + w2)ha + (m3 + w3)h + w2h̄a − w3h̄, (2.10)

dh
dt

= −(m4 + w4)h + w4h̄ + u. (2.11)

In the above equations, m1,m2,m3 and m4 represent the nominal part of the parameters and
w1,w2,w3,w4 represent the uncertain part. Since the equilibrium (ḡ, h̄a, h̄, ū) would not depend on
the uncertainties, the terms w1ḡ,w2h̄a,w3h̄ and w4h̄ are included such that this is guaranteed.

Because the blood glucose needs to be maintained within a narrow range from 3.6 to 6.0 mmol/l (65
to 108 mg/dl), we need to develop an insulin infusion rate u in response to a glucose surge to achieve
this goal. This problem can be mathematically formulated as follows. Given a glucose reference r(t)
(a constant 6 mmol/l or fluctuating around 6 mmol/l), we want to design a controller u = u(g, J, r) such
that for all sufficiently small uncertainties w1,w2,w3,w4

lim
t→∞

(g(t) − r(t)) = 0.

3. A static feedback and feedforward controller

To solve this control problem, we need to express Gd and r by using solutions of linear differential
systems. The glucose produced from food via the intestine is not exactly known and might be ran-
dom. This glucose disturbance could be of periodic nature and then can be approximated by a Fourier
polynomial

Gd = a0 + a1 sin(ωdt) + b1 cos(ωdt) + a2 sin(2ωdt) + b2 cos(2ωdt) + · · ·

+an sin(nωdt) + bn cos(nωdt). (3.1)

The number 1 and functions cosine’s and sine’s can be generated by the linear differential system

dvd

dt
= Advd,

where

Ad =



0 0 0 0 0 · · · 0 0
0 0 ωd 0 0 · · · 0 0
0 −ωd 0 0 0 · · · 0 0
0 0 0 0 2ωd · · · 0 0
0 0 0 −2ωd 0 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 0 nωd

0 0 0 0 0 · · · −nωd 0


.

Then Gd can be expressed as

Gd = Cdvd,

where Cd = [a0, a1, b1, a2, b2, · · · , an, bn] is a constant vector.
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Since the glucose reference r is of periodic nature, too, it can be generated in the same way as
follows:

r = ḡ + Crvr,

where ḡ is the glucose equilibrium, Cr is a constant vector and vr is governed by

dvr

dt
= Arvr

with Ar being similar to Ad:

Ar =



0 0 0 0 0 · · · 0 0
0 0 ωr 0 0 · · · 0 0
0 −ωr 0 0 0 · · · 0 0
0 0 0 0 2ωr · · · 0 0
0 0 0 −2ωr 0 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 0 mωr

0 0 0 0 0 · · · −mωr 0


.

Let

v =

[
vr

vd

]
, Ae =

[
Ar 0
0 Ad

]
.

Then glucose reference and disturbance can be lumped together as follows:

dv
dt

= Aev. (3.2)

We introduce the tracking error:

e = g − r = g − ḡ − Crvr.

Combining the exosystem (3.2) with the model (2.9)-(2.11), we obtain a composite system

dg
dt

= −(m1 + w1)g − gha + w1ḡ + Gb + [0,Cd]v, (3.3)

dha

dt
= −(m2 + w2)ha + (m3 + w3)h + w2h̄a − w3h̄, (3.4)

dh
dt

= −(m4 + w4)h + w4h̄ + u, (3.5)

dv
dt

= Aev, (3.6)

e = g − ḡ − [Cr, 0]v. (3.7)

When the disturbance Gd = 0 and r = ḡ, we can readily show that g, ha, h and u converge to their
constant equilibrium, respectively. When Gd and r are time-dependent, we can expect that g, ha, h and u
would converge to their time-varying “equilibrium” that would depend on v. In fact, such time-varying
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“equilibrium” called a stable center manifold is guaranteed by the center manifold theory (see, e.g.,
[9]). Thus we introduce the following v-dependent variable transform:

g = ĝ + ḡ + G(v), ha = ĥa + h̄a + Ha(v), h = ĥ + h̄ + H(v), u = û + ū + U(v) (3.8)

to translate the time-varying “equilibrium” to the origin. Substituting the above transformation into the
equations (3.3)-(3.7), we obtain

dĝ
dt

+
∂G
∂v

Aev = −a1(w)(ĝ + G(v)) − ḡ(ĥa + Ha(v))

−[ĝĥ + G(v)ĥa + ĝHa(v)] −G(v)Ha(v)
+[0,Cd]v, (3.9)

dĥa

dt
+
∂Ha

∂v
Aev = −a2(w)(ĥa + Ha(v)) + a3(w)(ĥ + H(v)), (3.10)

dĥ
dt

+
∂H
∂v

Aev = −a4(w)(ĥ + H(v)) + û + U(v), (3.11)

e = ĝ + G(v) − [Cr, 0]v, (3.12)

where w = [w1,w2,w3,w4] and

a1(w) = m1 + w1 + h̄a, (3.13)
a2(w) = m2 + w2, (3.14)
a3(w) = m3 + w3, (3.15)
a4(w) = m4 + w4. (3.16)

In order to eliminate the terms that do not contain either ĝ or ĥ, we set

∂G
∂v

Aev = −a1(w)G − ḡHa −GHa + [0,Cd]v, (3.17)

∂Ha

∂v
Aev = −a2(w)Ha + a3(w)H, (3.18)

∂H
∂v

Aev = −a4(w)H + U, (3.19)

0 = G − [Cr, 0]v. (3.20)

Notice that the equations (3.17)-(3.19) are the result of the center manifold theory (see [9]). In this
way, the tracking problem (3.3)-(3.7) is converted to the following stabilization problem:

dĝ
dt

= −a1(w)ĝ − ḡĥa − (ĝĥ + G(v)ĥa + ĝHa(v)), (3.21)

dĥa

dt
= −a2(w)ĥa + a3(w)ĥ, (3.22)

dĥ
dt

= −a4(w)ĥ + û, (3.23)

e = ĝ. (3.24)
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The regulator equations (3.17)-(3.20) can be solved explicitly as follows:

G(v) = [Cr, 0]v, (3.25)
F(v) = [0, Cd]v − a1(w)[Cr, 0]v − [Cr, 0]Aev, (3.26)

Ha(v) =
F(v)

ḡ + [Cr, 0]v
, (3.27)

H(v) =

∂Ha
∂v Aev + a2(w)Ha

a3(w)
(3.28)

=
(ḡ + [Cr, 0]v)∂F

∂v Aev − F(v)[Cr, 0]Aev
a3(w)[ḡ + [Cr, 0]v]2

+
a2(w)F(v)

a3(w)(ḡ + [Cr, 0]v)
, (3.29)

U(v) =
∂H
∂v

Aev + a4(w)H

=
([Cr, 0]Aev)∂F

∂v Aev + (ḡ + [Cr, 0]v)∂F
∂v A2

ev − ∂F
∂v Aev[Cr, 0]Aev − F(v)[Cr, 0]A2

ev
a3(w)[ḡ + [Cr, 0]v]2

−
2[(ḡ + [Cr, 0]v)∂F

∂v Aev − F(v)[Cr, 0]Aev][ḡ + [Cr, 0]v]a3(w)[Cr, 0]Aev
a2

3(w)[ḡ + [Cr, 0]v]4

+
a2(w)∂F

∂v Aeva3(w)(ḡ + [Cr, 0]v) − a2(w)F(v)a3(w)[Cr, 0]Aev)

a2
3(w)(ḡ + [Cr, 0]v)2

+a4(w)
(ḡ + [Cr, 0]v)∂F

∂v Aev − F(v)[Cr, 0]Aev
a3(w)[ḡ + [Cr, 0]v]2

+
a2(w)a4(w)F(v)

a3(w)(ḡ + [Cr, 0]v)
. (3.30)

It is easy to see that the equilibrium (0, 0, 0) of the system (3.21)-(3.24) at v = 0 can be stabilized
exponentially and locally by a static output feedback

û = kgĝ.

Therefore, we have constructed a static output feedback

u = ū + û + U(v)
= ū + kgĝ + U(v)
= ū + kg(g − ḡ − [Cr, 0]v)) + U(v) (3.31)

to regulate the blood glucose to its desired reference ḡ+[Cr, 0]v. Incorporating this feedback controller
into the system (3.3)-(3.7), we obtain a closed-loop system:

dg
dt

= −(m1 + w1)g − gha + w1ḡ + Gb + [0, Cd]v, (3.32)

dha

dt
= −(m2 + w2)ha + (m3 + w3)h + w2h̄a − w3h̄, (3.33)
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Figure 2. Glucose infusion shown in the second panel of Figure 2 of Sturis et al.’s [39]. The
unit cc per hour is converted into mM per minute.

dh
dt

= −(m4 + w4)h + w4h̄ + ū + kg(g − ḡ − [Cr, 0]v)) + U(v), (3.34)

dv
dt

= Aev, (3.35)

e = g − ḡ − [Cr, 0]v. (3.36)

We summarize this result in the following theorem.

Theorem 3.1. Suppose that kg is a constant to exponentially stabilize the equilibrium (0, 0, 0) of the
system (3.21)-(3.24). Then the closed-loop nonlinear system (3.32)-(3.36) asymptotically tracks the
blood glucose reference ḡ + [Cr, 0]v(t), that is,

lim
t→∞

[g(t) − ḡ − [Cr, 0]v(t)] = 0.

In numerical simulations below, we use the software Matlab and the experimental data from Sturis
et al.’s [39]. We use the software Engauge Digitizer 4.1 to read the data.

To conduct a numerical simulation, we use the experimental data from Sturis et al.’s [39] to de-
termine Cd, Cr, and Ae. These data were obtained from normal men without a history of diabetes
and the detailed experimental methods and procedures are referred to [39]. Since the data contain 24
hours profiles of glucose and plasma insulin, they are appropriate for testing whether the closed-loop
nonlinear system (3.32)-(3.36) asymptotically tracks the blood glucose reference. The data were read
from [39] by using the software Engauge Digitizer 4.1. According to the second panel of Figure 2 of
Sturis et al.’s [39], the exogenous glucose infusion shown in Figure 2 is given by

J = 125[1 + 0.33 · sin(πt/72)] (cc/hr).

Because the glucose concentration unit is mM, we need to covert the unit of cc per hour of the
infused solution to the unit of mM per minute of the infusion rate inside the body. According to Sturis
et al.’s paper [39], the infused glucose solution is 20% solution. This could mean that one cc solution
contains 0.2 grams of glucose. The blood volume of a person with the weight of 70 kg is about 6 liter.
Using the conversion 1 mM = 18 mg/dl, we obtain

J =
125 · 0.2 · 1000

60 · 18 · 60
[1 + 0.33 · sin(πt/72)] = 0.3858[1 + 0.33 · sin(πt/72)] (mM/min).
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Figure 3. Fourier polynomial fitting of the blood glucose data shown in the second panel of
Figure 2 of Sturis et al.’s [39]. The data were read by using the software Engauge Digitizer
4.1.

In this simulation, we find that Gb = 0.3218 mM/min. Thus we obtain

Cd = [0.3858 −Gb, 0.1273, 0],

and

Ad =


0 0 0
0 0 π/72
0 −π/72 0

 .
Fitting the experimental glucose data shown in the second panel of Figure 2 of Sturis et al.’s [39]

into the Fourier polynomial:

g = a0 +

17∑
i=1

[ai sin(iπt/750) + bi cos(iπt/750)],

we obtain

a0 = 7.599,
a1 = −0.2394, b1 = −1.024,
a2 = 0.328, b2 = −0.2217,
a3 = −0.2314, b3 = −0.1684,
a4 = −0.1663, b4 = −0.05297,
a5 = −0.1167, b5 = 0.1937,
a6 = 0.07061, b6 = −0.1443,
a7 = 0.3512, b7 = −0.08337,
a8 = 0.02829, b8 = −0.0705,
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Table 1. Values of parameters of the model (3.32)-(3.36)

Parameter Value Description
m1 0.000296 (/min) Glucose utilization rate constant
m2 0.045 (/min) Insulin effect rate constant
m3 0.000012 (/(pmol/l)/min2) Insulin effect rate constant
m4 0.268 (/min) Insulin metabolism constant
Gb 0.3218 (mM/min) Basal glucose input
ḡ 6 (mM) Glucose equilibrium
h̄ 200 (pmol/l) Insulin equilibrium
h̄a 0.0533 (/min) Insulin effect equilibrium
ū 53.63 (pmol/l/min) Insulin input equilibrium

a9 = 0.2508, b9 = −0.259,
a10 = 0.6841, b10 = −0.8653,
a11 = −0.3087, b11 = 0.5024,
a12 = −0.2117, b12 = 0.2057,
a13 = −0.07391, b13 = 0.02245,
a14 = −0.01738, b14 = −0.1047,
a15 = −0.1031, b15 = −0.05237,
a16 = −0.001116, b16 = 0.004296,
a17 = −0.04128, b17 = 0.003007.

The unit of the coefficients a0, ai and bi is mM, where i = 1, 2, · · · , 17. The glucose equilibrium is set
to ḡ = 6 mM. Thus we obtain

Cr = [a0 − ḡ, a1, b1, a2, b2, · · · a17, b17],

and

Ar =



0 0 0 0 0 · · · 0 0
0 0 π/750 0 0 · · · 0 0
0 −π/750 0 0 0 · · · 0 0
0 0 0 0 2π/750 · · · 0 0
0 0 0 −2π/750 0 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 0 17π/750
0 0 0 0 0 · · · −17π/750 0


.

Figure 3 shows that the data can be fitted into this Fourier polynomial very well.
The estimation of the parameters m1,m2,m3, and m4 is challenging. Because the expression of the

controller u is too big to be expressed in Matlab, we failed to use the Matlab function “sbioparamestim”
to estimate them. Thus, starting with the values from Bergman et al.’s paper [5]: m1 = 0.0296 (/min),
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Figure 4. Glucose tracking under the static output feedback controller (3.31). The blood
glucose g is tracking the desired time-varying reference determined by the experimental data
from Sturis et al.’s [39]. The data were read by using the software Engauge Digitizer 4.1.

m2 = 0.0186 (/min), m3 = 0.0000065 (/(µU/ml)/min2), m4 = 0.238 (/min) , we manually adjust them
to achieve as a best result as we can. These estimated values are presented in Table 1. Compared with
Bergman et al.’s original values, only m1 has a large change. The uncertainties w1,w2,w3, and w4 are
taken to be 10% of their nominal values. The proportional constant kg is taken to be 0.01 (/min).

The model is solved numerically with Matlab. We first run the model 1500 minutes to achieve
a stable state and then set that time as the initial time. Figure 4 shows that the blood glucose g is
asymptotically tracking the desired time-varying reference determined by the experimental data from
Sturis et al.’s [39]. Although the simulated insulin profile does not exactly match with the experimental
data, the simulated and experimental pulses occur simultaneously. The dynamics of the controller u
and insulin effect ha follows the dynamics of the glucose infusion.

Because the static output feedback (3.31) contains the uncertainties w, it is not robust. If the uncer-
tainties w are set to 0 in the static output feedback controller (3.31), Figure 5 shows that the glucose
g fails to track its reference. In fact, it has been shown that there are no static state feedback controls
that can solve the robust tracking problem (see [19]).

4. A robust dynamical feedback and feedforward controller

We now design a robust dynamical feedback and feedforward controller via linearization. The
linearization of the system (3.3)-(3.7) at its equilibrium is given by

dg̃
dt

= −a1(w)g̃ − ḡh̃a + [0, Cd]v, (4.1)

dh̃a

dt
= −a2(w)h̃a + a3(w)h̃, (4.2)
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Figure 5. Glucose fails to track its reference when the uncertainties are set to 0 in the static
output feedback controller (3.31).

dh̃
dt

= −a4(w)h̃ + ũ, (4.3)

dv
dt

= Aev, (4.4)

e = g̃ − [Cr, 0]v, (4.5)

where
g̃ = g − ḡ, h̃a = ha − h̄a, h̃ = h − h̄, ũ = u − ū. (4.6)

To construct a robust control law, we introduce the following dynamic compensator:

dz
dt

= G1z + G2(g̃ − [Cr, 0]v), (4.7)

where the matrix pair (G1,G2) is determined below. Since the state variables h̃a and h̃ are not available
for feedback, we also need to use the Luenburger observer:

do
dt

= Ao + Bũ + L(g̃ − Co), (4.8)

where the vector L is to be designed and

A =


−a1(0) −ḡ 0

0 −a2(0) a3(0)
0 0 −a4(0)

 , B =


0
0
1

 , C = [1, 0, 0]. (4.9)

We then introduce the following dynamic output feedback and feedforward controller:

ũ = −Kzz −Koo, (4.10)

where the vectors Ko and Kz are to be designed.
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A minimal polynomial of a matrix A is a polynomial P(λ) with the least degree such that P(A) = 0.
If ωr = ωd, then the minimal polynomial of Ae is given by

p(λ) = λ(λ2 + ω2
d)(λ2 + (2ωd)2) · · · (λ2 + (lωd)2)

= λ2l+1 + c1λ
2l + · · · + c2lλ + c2l+1,

where l = max(m, n). If ωr , ωd, then the minimal polynomial of Ae is given by

p(λ) = λ(λ2 + ω2
d)(λ2 + (2ωd)2) · · · (λ2 + (nωd)2)(λ2 + ω2

r )(λ2 + (2ωr)2) · · · (λ2 + (mωr)2)
= λ2l+1 + c1λ

2l + · · · + c2lλ + c2l+1,

where l = m + n. Then G1 is defined to be a companion matrix of the minimal polynomial and G2 is
set to be a matrix such that the pair (G1,G2) is controllable as follows:

G1 =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1
−c2l+1 −c2l −c2l−1 · · · −c1


, G2 =



0
0
...

0
1


. (4.11)

In control theory, such a matrix pair (G1,G2) is called to incorporate a 1-copy internal model of the
matrix Ae. In the following proof, we can see the reason why the pair (G1,G2) is set up this way.

To convert this tracking problem to a stabilization problem, we introduce the coordinate transfor-
mation

g̃ = ĝ + Gv, h̃a = ĥa + Hav, h̃ = ĥ + Hv, z = ẑ + Zv, o = ô + Ov. (4.12)

Substituting this transformation (4.12) and the feedback (4.10) into the composite system (4.1)-(4.5)
and the equations (4.7) and (4.8), we obtain

dĝ
dt

+ GAev = −a1(w)(ĝ + Gv) − ḡ(ĥa + Hav) + [0, Cd]v,

dĥa

dt
+ HaAev = −a2(w)(ĥa + Hav) + a3(w)(ĥ + Hv),

dĥ
dt

+ HAev = −a4(w)(ĥ + Hv) −Kz(ẑ + Zv) −Ko(ô + Ov),

dẑ
dt

+ ZAev = G1(ẑ + Zv) + G2(ĝ + Gv − [Cr, 0]v),

dô
dt

+ OAev = A(ô + Ov) − B[Kz(ẑ + Zv) + Ko(ô + Ov)] + L(ĝ + Gv − C(ô + Ov)),

e = ĝ + Gv − [Cr, 0]v.

In order to eliminate v from the above system, we set

GAe = −a1(w)G − ḡHa + [0, Cd], (4.13)
HaAe = −a2(w)Ha + a3(w)H, (4.14)
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HAe = −a4(w)H −KzZ −KoO, (4.15)
ZAe = G1Z + G2(G − [Cr, 0]), (4.16)
OAe = AO − BKzZ − BKoO + L(G − CO), (4.17)

0 = G − [Cr, 0] (4.18)

and then
dĝ
dt

= −a1(w)ĝ − ḡĥa, (4.19)

dĥa

dt
= −a2(w)ĥa + a3(w)ĥ, (4.20)

dĥ
dt

= −a4(w)ĥ −Kzẑ −Koô, (4.21)

dẑ
dt

= G1ẑ + G2ĝ, (4.22)

dô
dt

= Aô − B[Kzẑ + Koô] + L(ĝ − Cô), (4.23)

e = ĝ. (4.24)

If the regulator equations (4.13)-(4.18) have a solution, then the tracking problem is converted to the
problem of stabilization of the system (4.19)-(4.24).

We first show that the equilibrium (0, 0, 0, 0, 0) of the system (4.19)-(4.24) can be exponentially
stabilized at w = 0 and then robustly stabilized for sufficiently small w. For this, we set x̂ = [ĝ, ĥa, ĥ]T

and rewrite the system (4.19)-(4.24) at w = 0 as follows:

dx̂
dt

= Ax̂ − B[Kzẑ + Koô], (4.25)

dẑ
dt

= G1ẑ + G2Cx̂, (4.26)

dô
dt

= Aô − B[Kzẑ + Koô] + L(Cx̂ − Cô). (4.27)

Setting q̂ = x̂ − ô, we derive from the above system that

dx̂
dt

= (A − BKo)x̂ − B[Kzẑ −Koq̂], (4.28)

dẑ
dt

= G1ẑ + G2Cx̂, (4.29)

dq̂
dt

= (A − LC)q̂, (4.30)

and then

d
dt


x̂
ẑ
q̂

 =


A − BKo −BKz BKo

G2C G1 0
0 0 A − LC




x̂
ẑ
q̂

 . (4.31)

It is easy to see that (A,C) is observable and the pair

Φ =

[
A 0

G2C G1

]
, Ψ =

[
B
0

]
(4.32)
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is stabilizable (see, e.g., [19]). So there exist constant vectors Ko,Kz,L such that all eigenvalues of the
coefficient matrix of the system

Ω =


A − BKo −BKz BKo

G2C G1 0
0 0 A − LC

 (4.33)

have negative real parts. That is, the equilibrium (0, 0, 0, 0, 0) of the system (4.19)-(4.24) can be expo-
nentially stabilized at w = 0.

So it remains to show that the regulator equations (4.13)-(4.18) have a solution. To this end, we set
X = [G,Ha,H]T and rewrite the equations (4.13)-(4.17) as one matrix equation:

X
Z
Z

Ae = Q


X
Z
O

 +


CT [0, Cd]
G2[Cr, 0]

0

 , (4.34)

where

Q =


A −BKz −BKo

G2C G1 0
LC −BKz A − LC − BKo

 . (4.35)

Since Q and Ω are equivalent, all eigenvalues of Q also have negative real parts. Because all eigenval-
ues of Ae have zero real parts, the above matrix equation has a unique solution (see [19]). To show the
solution also satisfies the equation (4.18), we let Z = [Z1,Z2, · · · , ,Z2l+1]T . It then follows from the
equation (4.16) that

Z2 = Z1Ae, (4.36)
Z3 = Z2Ae = Z1A2

e , (4.37)
...

Z2l+1 = Z2lAe = Z1A2l
e , (4.38)

G = [Cr, 0] + Z2l+1Ae + c2l+1Z1 + c2lZ2 + · · · + c1Z2l+1

= [Cr, 0] + Z1A2l+1
e + c2l+1Z1 + c2lZ1Ae + · · · + c1Z1A2l

e

= [Cr, 0] + Z1(c2l+1I + c2lAe + · · · + c1A2l
e + A2l+1

e )
= [Cr, 0] + Z10
= [Cr, 0]. (4.39)

Here we have used the property that p(λ) is the minimal polynomial of Ae, that is, p(Ae) = 0. The
above proof of the equation (4.18) gives the reason why the pair (G1,G2) is constructed as in (4.11).

Using the translation (4.6), we obtain a dynamic output feedback and feedforward controller for the
original nonlinear system (3.3)-(3.7):

u = ū + ũ

= ū −Kzz −Koo, (4.40)
dz
dt

= G1z + G2(g − ḡ − [Cr, 0]v), (4.41)
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do
dt

= Ao − B(Kzz + Koo) + L(g − ḡ − Co). (4.42)

For the convenience of reference, we collect all relevant equations together to form a closed-loop
system:

dg
dt

= −(m1 + w1)g − gha + w1ḡ + Gb + [0, Cd]v, (4.43)

dha

dt
= −(m2 + w2)ha + (m3 + w3)h + w2h̄a − w3h̄, (4.44)

dh
dt

= −(m4 + w4)h + w4h̄ + ū −Kzz −Koo, (4.45)

dz
dt

= G1z + G2(g − ḡ − [Cr, 0]v), (4.46)

do
dt

= Ao − B(Kzz + Koo) + L(g − ḡ − Co), (4.47)

dv
dt

= Aev, (4.48)

e = g − ḡ − [Cr, 0]v. (4.49)

Theorem 4.1. Suppose that Ko,Kz,L are constant vectors such that the matrix

Ω =


A − BKo −BKz BKo

G2C G1 0
0 0 A − LC


is exponentially stable. Then the blood glucose of the closed-loop nonlinear system (4.43)-(4.49)
asymptotically tracks its reference ḡ + [Cr, 0]v(t) for any sufficiently small uncertainty w, that is,

lim
t→∞

[g(t) − ḡ − [Cr, 0]v(t)] = 0.

We use the same data as used in the above section to conduct a numerical simulation for this robust
approximate controller (4.40). In this simulation, we first used an internal model 1-copy G1 of the
matrix

Ae =



0 0 0 · · · 0 0 0 0 0
0 0 π/750 · · · 0 0 0 0 0
0 −π/750 0 · · · 0 0 0 0 0
0 0 0 · · · 0 0 0 0 0
0 0 0 · · · 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 · · · 0 17π/750 0 0 0
0 0 0 · · · −17π/750 0 0 0 0
0 0 0 · · · 0 0 0 0 0
0 0 0 · · · 0 0 0 0 π/72
0 0 0 · · · 0 0 0 −π/72 0



.
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Unfortunately, Matlab failed to solve the closed-loop control system (4.43)-(4.49) with this high di-
mensional G1. Thus we have to reduce the dimension to obtain an internal model 1-copy G1 of the
matrix

Ãe =



0 0 0 0 0 0 0 0 0 0
0 0 π/750 0 0 0 0 0 0 0
0 −π/750 0 0 0 0 0 0 0 0
0 0 0 0 2π/750 0 0 0 0 0
0 0 0 −2π/750 0 0 0 0 0 0
0 0 0 0 0 0 3π/750 0 0 0
0 0 0 0 0 −3π/750 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 π/72
0 0 0 0 0 0 0 0 −π/72 0



.

In this case, the matrices G1 and G2 are given by

G1 =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 −3.70 · 10−16 0 −2.89 · 10−11 0 −4.83 · 10−7 0 −0.0021495 0


,

G2 =



0
0
0
0
0
0
0
0
1


.

The vectors Ko and Kz are determined in the way such that the eigenvalues of the
matrix Φ − ΨK are: −0.0500,−0.0909,−0.1318,−0.1727,−0.2136,−0.2545,−0.2955,−0.3364,
−0.3773,−0.4182,−0.4591,−0.5000, where K = [Ko,Kz]. Using the algorithm for computing the
feedback gain matrix from Section 3.4 of the book [26], we obtain

Ko = [−55379.84, 379273.25, 2.93],
Kz = [−0.00028,−0.019,−0.56,−9.41,−100.48,−728.94,−3701.22,−13180,−33587.83].

The vector L is determined in the way such that the eigenvalues of the matrix A − LC are:
−0.01,−0.02,−0.03. Using the Matlab function place, we obtain
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Figure 6. Glucose tracking under the robust controller (4.40). The dynamics of the blood
glucose tracking is almost identical to the one under the static controller (3.31).

L = [−0.30679,−0.011386, 211.93]T .

According to our simulation studies, the eigenvalues should be between −0.5 and −0.01 to achieve
a good performance of the controller. All other parameter values are the same as in the previous
simulations.

Comparing Figure 6 with Figure 4, we found it interesting that the dynamics of all state variables
under the robust controller (4.40) is identical to the one under the static controller (3.31).

The static controller (3.31) and the robust dynamic controller (4.40) have their own advantages and
disadvantages. The static controller (3.31) is easy to implement, but is not flexible, no parameters
being used to adjust to improve its performance. Since it is not robust, a small change in the model
parameters results in a deviation of blood glucose from its target reference. On the other hand, the
robust dynamical controller (4.40) can tolerate certain small changes in the model parameters and
its performance can be improved by adjusting certain controller parameters such as Ko,Kz and L.
However, it is more difficult to implement because the dimension of the closed-loop control system is
greatly increased through the dynamic compensator (4.7). As discussed above, Matlab failed to solve
the closed-loop control system numerically if the original G1 for the matrix Ae is used. Furthermore,
its performance critically depends on the gain vectors Ko,Kz and L. It is a great challenging problem to
determine them to achieve the best performance of the controller in a way such that the simulated both
glucose and insulin dynamics agrees with the real experimental data. Since the controller performance
issue itself is an independent research area [12, 22, 28], this problem is beyond the scope of this work.
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5. Discussion and conclusion

In this work, we have solved a robust glucose tracking problem. Parameter uncertainties were
introduced into the mathematical model proposed by Bergman et al. [5]. Using an actual blood glucose
level as feedback and an exogenous glucose input and a desired glucose reference as feedforward, we
have designed a robust feedback and feedforward controller such that the blood glucose tracks the
desired time-varying glucose reference for any small uncertainties. Numerical simulations conducted
with published experimental blood glucose data show that our controller is effective in achieving the
blood glucose tracking and agree with our theoretical results.

Limitations exist in this work. Although our robust feedback and feedforward controllers might
have a potential application in the insulin pump technology, more comprehensive tests and improve-
ments with experimental and clinic data are needed to be done before they might be implemented in
an insulin pump. The interaction between glucose and insulin is complex. Our current simple model
missed considering many other important control mechanisms such as the glucose regulation by the
hormone glucagon and the organ liver. Therefore we may need to consider more complex mathemati-
cal models, such as the model proposed by Sturis et al. [40] and the model proposed by Liu et al. [24],
and introduce parameter uncertainties into them. In all these cases, the regulator equations are more
complex and it might be impossible to solve them analytically. Then a different approach such as used
in [3] is needed to design a controller.
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