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Abstract. Optimal control strategies for controlling seasonal influenza trans-
mission in the US are of high interest, because of the significant epidemiological
and economic burden of influenza. To evaluate optimal strategies of vaccination
and social distancing, we used an age-structured dynamic model of seasonal
influenza. We applied optimal control theory to identify the best way of re-
ducing morbidity and mortality at a minimal cost. In combination with the
Pontryagins maximum principle, we calculated time-dependent optimal poli-
cies of vaccination and social distancing to minimize the epidemiological and
economic burden associated with seasonal influenza. We computed optimal
age-specific intervention strategies and analyze them under various costs of
interventions and disease transmissibility. Our results show that combined
strategies have a stronger impact on the reduction of the final epidemic size.
Our results also suggest that the optimal vaccination can be achieved by al-
locating most vaccines to preschool-age children (age under five) followed by
young adults (age 20-39) and school age children (age 6-19). We find that the
optimal vaccination rates for all age groups are highest at the beginning of the
outbreak, requiring intense effort at the early phase of an epidemic. On the
other hand, optimal social distancing of clinical cases tends to last the entire
duration of an outbreak, and its intensity is relatively equal for all age groups.
Furthermore, with higher transmissibility of the influenza virus (i.e. higher

R0), the optimal control strategy needs to include more efforts to increase
vaccination rates rather than efforts to encourage social distancing. Taken
together, public health agencies need to consider both the transmissibility of
the virus and ways to encourage early vaccination as well as voluntary social
distancing of symptomatic cases in order to determine optimal intervention
strategies against seasonal influenza.

1. Introduction. Seasonal influenza annually infects 10− 20% of the US popula-
tion, resulting in about 200,000 hospitalizations and 36,000 deaths and an annual
economic burden of $87.1 billion in the U.S. alone [14, 51]. The severe economic
impacts of these recurring influenza epidemics include decreased workforce produc-
tivity, loss of life, and strained healthcare services [12, 35]. Worse, influenza is
expected to become increasingly more widespread given current population growth
and urbanization [53, 57].

The principal control strategy for controlling seasonal influenza transmission in
the US is annual vaccination, recommended for all persons over the age of 6 months.
To keep pace with the antigenic evolution of influenza, the influenza vaccine is
updated annually and three strains identified as the ones most likely to be circulating
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among the population are selected for inclusion in the upcoming season’s vaccine
[14].

Children are considered to be the most responsible for the transmission of diseases
such as influenza because of their high contact rate with their peers in school settings
[5]. On the other hand, the influenza-related hospitalization and mortality burden
is largely carried by people of ages over 65 years [31]. Indeed, the influenza-related
hospitalization and mortality rates of elderly people are 20 and 100 times higher than
those of people aged 5-49 [43, 44]. As a consequence, influenza vaccination is highly
encouraged for the elderly, leading to relatively high vaccine coverage compared
to that of other age groups. However, it has recently been shown that optimal
influenza control in the entire population, including the elderly, can be achieved if
vaccines are preferentially distributed to children and parents [30, 32, 51]. In fact,
despite a rise in elder vaccination rates from 15% to 65% between 1985 and 2000,
elderly influenza mortality rates remained largely unaffected [41], likely due to low
vaccine efficacy among people aged 65 and older [17, 18].

Aside from vaccination, social distancing policy, often considered during a severe
epidemic, dictates that infected individuals stay home from school or work [13, 23].
Social distancing interventions are known to reduce the overall illness attack rates
and the consequential excess mortality attributed to influenza. Such interventions
are also known to delay and reduce the peak attack rate, diminishing pressure on
health services [23]. A recent study showed that social distancing measures such
as school closures, isolation of symptomatic individuals, workplace non-attendance,
and reduced community contact would prevent the development of influenza epi-
demics [23]. Another study arrived at a similar conclusion, finding that if social
distancing measures are introduced early, they could notably mitigate the impact
of future influenza pandemics [3]. Social distancing interventions such as reducing
social and community contacts, and increasing home isolation are embedded within
the pandemic influenza preparedness plans of most countries and are recommended
by the WHO [20, 23]. For instance, during the early part of the 2009 H1N1 pan-
demic, the CDC (Centers for Disease Control and Prevention) recommended that
those with influenza-like illness stay home from work for 7-10 days and an addi-
tional day after symptoms subsided [56]. However, social distancing controls can
bear economic costs as well, as shown by a previous study on a cost analysis of
control strategies for the 2009 H1N1 pandemic in Australia [19].

More comprehensive and combined strategies have been shown to be more suc-
cessful than vaccination or social distancing alone [24]. The ability of mathematical
modeling to predict the effectiveness of combined control strategies and positively
influence public health policy is well established [16, 21, 24, 37, 52]. Based on ap-
proaches using optimal control theory, mathematical modeling studies have been
carried out to define optimal strategies involving various interventions such as lim-
ited vaccine supply [26, 25], social distancing [29] and isolation [24]. Combined
models of antiviral treatment and social distancing [16, 39], or vaccination and
antiviral treatment [42] have also been proposed for influenza control and the ap-
plication of optimal control theory. In addition, age-structured models of influenza
transmission have indicated that optimal vaccine allocations differ markedly be-
tween age groups because both the risk of infection and its severity are dependent
on age [7, 14, 21, 32, 36, 40, 45, 47].

Here, we propose an age-structured mathematical model of influenza transmis-
sion to assess time variations in age-specific vaccination and social distancing rates
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Age group (i) 1 2 3 4 5 6

Ages (years) 0-5 6-12 13-19 20-39 40-59 60+
Initial population distribution (%) 8.14 9.32 9.34 26.90 27.20 19.10

Table 1. Population distribution in age groups

of infected individuals. Using optimal control theory, we determine the optimal
strategies of age-specific vaccination and social distancing during seasonal influenza
taking into consideration temporal dynamics of infection, hospitalization, and age-
specific vaccine efficacy under different epidemiological scenarios. Specifically we
examine the target age groups for vaccination, optimal timing of vaccination as
well as social distancing of clinical cases that significantly reduce morbidity associ-
ated with seasonal influenza at a minimal cost.

2. Method. To model seasonal influenza transmission in the United States, we
divide the population into the six age groups (0-5, 6-12, 13-19, 20-39, 40-59, and
60+). The numbers of people in each age group were set to values estimated for the
U.S. 2012 population [54]. In our model, individuals in each age class are subdivided
based on epidemiological status. Specifically, our model classifies individuals as
susceptible (Si), vaccinated (Vi), exposed (Ei), clinically ill and infectious (Ii),
asymptomatic (Ai), hospitalized (Ji), recovered (Ri) and dead (Di) for i = 1, . . . , 6.
The age groups are denoted by a subscript i.

It is assumed that susceptible individuals in age group i become infected at rate

βi

m
∑

j=1

φij(1 − ρi)Ij
N

,

where φij is the contact rate for infective individuals of age group j (Ij) with
susceptible individuals of age group i (Si) (see Appendix) [50]. In order to describe
social distancing during a disease outbreak, we assume that infectious members in
age group i decrease their rate of contact by a fraction ρi(t) where ρi(t) ∈ [0, 1]. We
define βi as the probability of transmission per contact in age group i and calculate
it based on the age-specific attack rate [35]. The total population size is given by

N(t) =
∑6

i=1Ni(t) =
∑6

i=1(Si(t) + Vi(t) + Ei(t) + Ii(t) + Ai(t) + Ji(t) + Ri(t))
where Ni(t) the total number of individuals of age group i.

Susceptible individuals in age group i are assumed to be vaccinated at the rate
of ψi(t) where ψi(t) ∈ [0,M ]. We assume that the vaccine provides partial pro-
tection, resulting in vaccinated individuals being less susceptible than unvaccinated
ones. Specifically, the infection rate among vaccinated individuals in age group i
is assumed to be reduced by vaccine efficacy, σi(t), where σi(t) ∈ [0, 1]. Therefore,
vaccinated individuals in age group i become infected at rate

(1− σi)βi

m
∑

j=1

φij(1− ρi)Ij
N

.

Upon infection, individuals enter a latency period, 1/k. Latently infected indi-
viduals proceed to become infectious, and a proportion, p, of infected individuals
becomes symptomatic. We define b as relative infectiousness of asymptomatic cases
compared to symptomatic ones. Both symptomatic and asymptomatic individuals
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recover at the mean rate γ, while a proportion, αi/(γ+αi), of symptomatic individ-
uals in age group i are hospitalized. Hospitalized individuals either recover at the
rate θ or die from influenza at the age-specific rate δi. Recovered individuals are
assumed to be fully protected against further influenza infection for the remainder
of the outbreak. The baseline values of epidemiological parameters are given in Ta-
ble 2. The transmission dynamic model that incorporates the time-dependent (six
age-specific) control functions, ρi(t) and ψi(t), is thus described by the following
ordinary differential equations:

S′
i(t) = −λiSi − ψiSi,

V ′
i (t) = ψiSi − (1− σi)λiVi,

E′
i(t) = λi{Si + (1 − σi)Vi} − kEi,

I ′i(t) = kpEi − (αi + γ)Ii,

A′
i(t) = k(1− p)Ei − γAi,

J ′
i(t) = αiIi − (θi + δi)Ji,

R′
i(t) = γ(Ai + Ii) + θiJi,

D′
i(t) = δiJi,

(1)

where force of infection is given by λi(t) = βi
∑6

j=1
φij{bAj(t)+(1−ρj(t))Ij(t)}

N(t) . Initial

conditions are defined as Si(0) = Ni(0) − εi, Vi(0) = 0, Ei(0) = 0, Ii(0) = εi,
Ai(0) = 0, Ji(0) = 0, Ri(0) = 0, and Di(0) = 0 where εi > 0 is small.

Note that the variable Ri and Di appears only in the R′
i and D′

i differential
equation, and the other variables do not depend on Ri or Di. Thus, we consider
the following system when we solve the optimality system, and determine Ri(t) and
Di(t) after solving for Si(t), Vi(t), Ei(t), Ii(t) and Ji(t).
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Figure 1. Age-dependent contact rate. The contact matrix φij
between age groups i and j per day is shown.
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The age-structured mathematical model we will use is therefore

S′
i(t) = −λiSi − ψiSi,

V ′
i (t) = ψiSi − (1 − σi)λiVi,

E′
i(t) = λi{Si + (1 − σi)Vi} − kEi,

I ′i(t) = kpEi − (αi + γ)Ii,

A′
i(t) = k(1− p)Ei − γAi,

J ′
i(t) = αiIi − (θi + δi)Ji,

(2)

where λi = βi
∑6

j=1
φij{bAj+(1−ρj)Ij}

N .
From our age-structured model, the expression for <0 can be derived using the

next-generation operator method. That is, <0 = r(FW−1), where <0 is the spectral
radius of the next generation matrix FW−1 [7, 8, 48]. In our model, the next
generation matrix is given by

FW−1 = (Mij)i,j=1,...,6

where

Mij = βiφij
Nk(0)

N(0)

(

p

γ + αj
+

(1− p)b

γ

)

, i, j = 1, . . . , 6.

The objective functional to be minimized is

F(ψi(t), ρi(t)) =

∫ T

t=0

6
∑

i=1

{χiIi(t) + ΩiJi(t) +Bρ2i (t)Ii(t) + Ciψ
2
i (t)Si(t)}dt, (3)

where the control effect is modeled by quadratic terms in ψ(t) and ρ(t). We assume
that the control efforts are nonlinear (quadratic) to the objective functional. The
control efforts are modeled by quadratic terms in order to incorporate the societal
cost the associated with the implementation of control measures. Here, χi and $i

are the costs associated with symptomatic infection and hospitalization per day for
individuals in age group i, respectively. In addition, B is the relative opportunity
cost associated with social distancing for infected individuals, and for simplicity,
it is assumed to be invariant across age groups. We define Ci and CV,i as the
relative cost of vaccination and the age-specific cost of vaccination, respectively,
where Ci = CκCV,i.

The age-dependent optimal strategies of vaccination and social distancing can
be obtained by finding an optimal control functions, ψ∗

i (t) and ρ
∗
i (t), such that

F(ψ∗
i (t), ρ

∗
i (t)) = min

Θ
F(ψi(t), ρi(t)) (4)

subject to Model (2) where Θ = {(ψi, ρi) ∈ L1(0, T )|0 ≤ ψi ≤M, 0 ≤ ρi ≤ 1}. The
control upper bound for vaccination, M , represents the maximum daily vaccination
rate, which has been previously estimated at 0.02 [25, 55].

We use Pontryagins Maximum Principle to solve this optimal control problem
and its optimality system [28]. Specifically, the necessary conditions that solutions
to optimal problem Eq.(4) must satisfy are derived from Pontryagin’s Maximum
Principle. This principle converts our system (2)-(4) into the problem of minimizing
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the Hamiltonian H given by

H =

6
∑

i=1

{χiIi(t) + ΩiJi(t) +Bρ2i (t)Ii(t) + Ciψ
2
i (t)Si(t)}

+

6
∑

i=1

QSi







−Si

6
∑

j=1

βiφij(bAj + (1− ρj)Ij)/N − ψiSi







+

6
∑

i=1

QVi







−(1− σi)Vi

6
∑

j=1

βiφij(bAj + (1− ρj)Ij)/N + ψiSi







+

6
∑

i=1

QEi







(Si + (1 − σi)Vi)

6
∑

j=1

βiφij(bAj + (1− ρj)Ij)/N − kEi







+

6
∑

i=1

QIi {kpEi − (αi + γ)Ii}+

6
∑

i=1

QAi
{k(1− p)Ei − γAi}

+

6
∑

i=1

QJi
{αiIi − (θi + δi)Ji} .

(5)

There exists a optimal control (ψ∗(t), ρ∗(t)) and corresponding solutions, Si, Vi,
Ei, Ii, Ai, and Ji (i = 1, 2, . . . , 6) that minimize F(ψ, ρ) over Ω [10]. The existence
of optimal controls follows from Corollary 4.1 of [10] and is guaranteed by standard
results in control theory. That is, the convexity of integrand F with respect to (ψ, ρ)
is satisfied, and the state system satisfies the Lipschitz property with respect to
state variables. Applying Pontryagin’s Maximum Principle, we obtain the following
adjoint system [38]:

dQSi

dt
= −

∂H

∂Si
,
dQVi

dt
= −

∂H

∂Vi
,
dQEi

dt
= −

∂H

∂Ei
,

dQIi

dt
= −

∂H

∂Ii
,
dQAi

dt
= −

∂H

∂Ai
,
dQJi

dt
= −

∂H

∂Ji
,

evaluated at the optimal controls and corresponding states (i = 1, 2, . . . , 6). The
equations above reduce to

dQSi

dt
=(QSi

−QVi
)ψi − Ciψ

2
i (t) + (QSi

−QEi
)

6
∑

j=1

βiφij{(1− ρj)Ij + bAj}/N,

dQVi

dt
=(QVi

−QEi
)(1 − σi)

6
∑

j=1

βiφij{(1− ρj)Ij + bAj},

dQEi

dt
=k{QEi

− pQIi − (1− p)QAi
},

dQIi

dt
=− χi −Bρ2i (t) + (αi + γ)QIi − αiQJi

+ (1− ρi)

6
∑

j=1

βiφji
N

{Sj(QSj
−QEj

) + (1− σj)Vj(QVj
−QEj

)},

(6)
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dQAi

dt
=γQAi

+
6

∑

j=1

βiφjib

N
{Sj(QSj

−QEj
) + (1− σj)Vj(QVj

−QEj
)},

dQJi

dt
=− Ωi + (θi + δi)QJi

.

The transversality conditions are

QSi
(T ) = QVi

(T ) = QEi
(T ) = QIi(T ) = QAi

(T ) = QJi
(T ) = 0 (i = 1, 2, . . . , 6).

The Hamiltonian H is minimized with respect to the controls, giving the following
optimality conditions:

∂H

∂ψi
= 0,

∂H

∂ρi
= 0 (i = 1, 2, . . . , 6)

at ψi(t) = ψ∗
i (t) and ρi(t) = ρ∗i (t). Solving for ψ and ρ subject to the constraints,

we obtain:

ψ∗
i (t) = min

{

max

{

0,
(QSi

−QVi
)

2Ci

}

,M

}

,

ρ∗i (t) = min
{

max
{

0, ρ#i

}

, 1
}

.

where

ρ#i =
1

2Bi

6
∑

j=1

βiφji
N

{Sj(QEj
−QSj

) + (1− σj)Vj(QEj
−QVj

)}.

3. Numerical results. Here, we analyzed numerically an optimal control strategy
applied to our model of influenza transmission, and show representative numerical
simulations to illustrate the results of applying optimal controls to our model under
two scenarios. The first scenario considers vaccination without social distancing.
In the second scenario, both social distancing of clinical cases and vaccination are
implemented simultaneously.

Numerical solutions to the optimality system, model 2 and adjoint Eq. 6, were
carried out using the forward-backward scheme [28]. Starting with an initial guess
for the optimal controls, ψi(t) and ρi(t), the state variables were solved forward
in time from model 2 using the forward Euler method. Next, state variables and
the transversality conditions were used to solve the adjoint Eq. 6 backward in
time. The controls, ψi(t) and ρi(t), were updated, and the error between their
old and updated values was calculated. This iterative process terminates when the
error is less than a pre-assigned value, 0.00001. The final values of ψi(t) and ρi(t)
via the above method were used as our numerical approximations to the optimal
control solutions. Unless otherwise specified, we used the values in Table 2 as a
baseline parameter set for simulations. Results of the sensitivity analyses on key
model parameters such as a basic reproductive ratio and weight constants were also
determined.
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Parameter Description Value References

<0 Basic reproductive ratio 1.85 [33, 46]
βi Probability of transmission per contact 0.05 for i = 1 [35]

0.02 for i = 2, 3, 4, 5
0.03 for i = 6

σi Age-specific protective efficacy of 0.6 for i = 6; [11]
vaccination 0.8 otherwise

b Relative infectiousness of asymptomatic 0.142 [34]
cases compared to symptomatic cases

p Proportion of infected individuals who 0.33 [40]
become symptomatic

k Rate of progression from latent to 1/1.2 [11]
infectious class (days−1)

γ Recovery rate for infectious 1/4 [11]

class (days−1)

αi Age-specific diagnostic rate (days−1) 0.001 for i = 1, 2, 3 [6]
0.002 for i = 4
0.003 for i = 5
0.007 for i = 6

θ Recovery rate for hospitalized 0.34 [24]
individuals (days−1)

δi Age-specific mortality rate (days−1) 0.001 for i = 1 [6]
0.007 for i = 2, 3, 4
0.016 for i = 5
0.065 for i = 6

T The simulated duration (days) 150
M The upper bound of vaccination 0.02 [25]

rates (days−1)
B Weight constant on social-distancing 500 Author’s

control assumption
Cκ Weight constant on vaccination 50 Author’s

assumption
CV,i Cost of vaccine and vaccine $50 for i = 1 [6]

administration $45 for i = 2
$41 for i = 3
$32 for i = 4, 5, 6

Table 2. Definition of parameters and baseline values used in nu-
merical simulations.

3.1. Optimal vaccination strategy. To understand the effects of optimal vac-
cination strategies on the dynamics of seasonal influenza, we first simulated our
model (2) without any control measure, i.e. ψi(t) = 0 and ρi(t) = 0. In the absence
of intervention, the cumulative proportion of clinical cases is estimated at 23% (Fig
2(c)). Specifically, 31% of pre-school children, 23− 24% of school-aged children and
adults, and 20% of the elderly (aged 65+) are estimated to be clinically infected
with seasonal influenza in the absence of any control measure.

Next, in order to highlight the exclusive use of vaccination as a control measure,
we computed the optimal strategy for seasonal influenza when vaccination was the
only control, i.e. ρi(t) = 0 (Fig 2). Our results illustrate the optimal control
functions computed as a function of time using baseline parameters in Table 2 (Fig
2(a)). The corresponding cumulative vaccine coverage levels and daily incidence of
the symptomatic class in the presence and absence of optimal vaccination are also
computed (Figs 2(b) and 2(c)). The optimal vaccination rates for all age groups
were found to be the highest at the beginning of the outbreak, requiring intense
effort for the first 30 days for the youngest age group (Fig 2(a)). The optimal rate
of vaccination decreases gradually for all age groups over time. Such pattern of
optimal vaccination is consistent with previous studies ([2, 39]) in that the optimal
control solution always appears to be one in which maximum effort is required at the
beginning of the outbreak. Our results indicate that the optimal vaccine coverage
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Figure 2. Optimal vaccination rate, ψi(t), as a function of time
in the absence of social distancing policy. (a) The age-specific op-
timal vaccination rates are calculated. Figure legends indicate age
groups (Table 1). (b) Age-specific levels of cumulative vaccination
when optimal vaccination strategy is applied. (c) The correspond-
ing daily incidence of symptomatic infections, Σ6

i=1Ii(t), under no
controls with those generated with optimal vaccination control are
compared.

level is highest in preschool-age children under five years of age, followed by younger
and older adults (age 20 − 39 and 40 − 59, respectively), while the elderly (age 65
and older) achieve the lowest vaccine coverage level. During the entire duration of
an influenza epidemic, the optimal vaccination rate for the preschool-age children
is found to maintain the highest level of vaccination rate among all age groups,
achieving 70% of vaccine coverage eventually. This is because the susceptibility
among the preschool-age children (β1) is highest, and the size of this age group
is relatively small. Vaccinating younger and older adults also provides indirect
protection of preschool-age children due to their relatively high contact rates.

In our model, a significant reduction in the size of the outbreak is observed when
vaccination is the sole control measure. The dynamics of a natural single outbreak
are significantly affected by introducing optimal vaccination (Fig 2(c)). In fact, our
results indicate that vaccination reduces the total morbidity by over 60% for all age
groups when the optimal vaccination strategy is employed (Fig 4).
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Figure 3. Dynamics of the symptomatic classes (Ii(t)) in age
groups. We compare a baseline situation where no vaccine is used
(a) with results implementing optimal vaccination strategies (b).
Social distancing measure is not implemented in both cases (ρi(t) =
0).
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Figure 4. Optimal vaccine coverage and the resulting reduction
in influenza incidence. (a) Age-specific optimal vaccine coverage
levels are illustrated. (b) The percent age-specific reductions in
infected (symptomatic) classes are shown relative to the situation
where no intervention is applied).

The optimal vaccination strategies are found to be highly dependent on the costs
of vaccination (Figs 5 and 6). In general, as the cost of vaccination increases, we ob-
served dramatic decrease in the level of the optimal vaccination rate, ψi(t), although
the optimal control function and the resulting influenza outbreak are qualitatively
similar to the baseline case with Cκ = 50. For illustration purpose, we selected
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Figure 5. The impact of decreased weight constants on age-
specific vaccination rates. (a) Using the weight constant, Cκ,i = 10,
results in the lower vaccination rates for all age groups. (b) The
corresponding cumulative vaccine coverage levels in age groups are
presented. (b) The corresponding curves illustrating the number of
infections at time t (I(t)) with optimal vaccination and no control
are presented.

simulations where the cost of implementing vaccination is either 20% of the base-
line value (Fig 5) or is increased two-fold over the baseline value (Cκ = 50) (Figs
6). In general, higher relative vaccination costs result in an increase in the total
number of influenza cases. In the case where the weight constant for vaccination
(Cκ) is reduced to 10, we observed a significant increase in the level of optimal vac-
cine coverage for all age groups, achieving 78% of vaccine coverage on average for
the population (Fig 5). This overall vaccine coverage is reduced to 41% when the
weight constant for vaccination (Cκ) is increased to 100. The percent reduction in
the number of symptomatic cases of this single control strategy is 88% if Cκ equals
10 and decreases dramatically to 50% if vaccination is relatively costly (Cκ = 100)
(Figs 5(c) and 6(c)).

3.2. Optimal combined strategy of vaccination and social distancing. To
present the optimal strategy when social distancing and vaccination control mea-
sures are implemented simultaneously, the numerical solutions of optimal controls,
ψi(t) and ρi(t), are computed (Fig 7). The optimal control strategies of both social
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Figure 6. The impact of increased weight constants on age-
specific vaccination rates. (a) Using the weight constant, Cκ,i =
100, results in the higher vaccination rates for all age groups. (b)
The corresponding cumulative vaccine coverage levels in age groups
are presented. (b) The corresponding curves illustrating the num-
ber of infections at time t (I(t)) with optimal vaccination and no
control are presented.

distancing and vaccination require maximum effort, i.e. upper bound of ψi(t) and
ρi(t), at the beginning of the outbreak. Specifically, symptomatic individuals of all
ages are expected to do social distancing with a probability of ρmax(t) for more
than 60 days. Social distancing is more costly than vaccination by our modeling
assumption and yet, according to our results, most of the intervention effort should
be placed in social distancing of infected individuals throughout the outbreak in
order to achieve optimal controls at minimal cost (Fig 7(d)). Taken together, our
results showed that in order to minimize the epidemiological burden of seasonal
influenza at minimal cost, social distancing efforts for symptomatic individuals of
all ages must be kept near the maximum through the entire duration of an influenza
epidemic, while vaccination of preschool-age children under five years of age needs
to be prioritized (Fig 7). Throughout the epidemic, our results indicate that op-
timal vaccination rate for this youngest age group is significantly higher than for
other age groups, followed by adults (age 20− 59), school-age children (ages 6− 19)
and the elderly (ages 65+).
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Figure 7. Optimal control strategies of vaccination rate and so-
cial distancing (ψi(t) and ρi(t), respectively). (a) The age-specific
optimal vaccination rates are calculated. Figure legends indicate
age groups (Table 1). (b) The age-specific optimal strategies of so-
cial distancing are calculated. (c) Age-specific levels of cumulative
vaccination when optimal vaccination strategy is applied. (d) The
corresponding daily incidence of symptomatic infections, Σ6

i=1Ii(t),
under no controls with those generated with optimal vaccination
control are compared.

The dual controls of vaccination and social distancing of symptomatic cases are so
effective that they nearly eradicate the disease (Fig 7(d) and Fig 8(d)). In fact, the
implementation of the optimal controls (social distancing and vaccination) imme-
diately suppresses the outbreak (Fig 7(d)), reducing the total number of influenza
cases by over 90% for all age groups (Fig 8).

Social distancing, in reality, is hard to be in practice completely, so we assume
the maximum level (ρmax) of adherence of social distancing in our model, when
defining optimal strategies of social distancing which minimize economic burden
associated with influenza epidemic and control efforts. Increasing this maximum
adherence of social distancing (ρmax) to 0.5 leads to an optimal control policy that
puts more effort into social distancing of clinical cases than with baseline value of
ρmax, 0.3 (Fig 9). The higher the maximum adherence level to social distancing
becomes, the more emphasis should be placed on social distancing in order to achieve
optimized control efforts. In fact, it was shown that a reduction of 98% in the final
epidemic size can be achieved when ρmax is increased to 0.5 (Fig 9(d)). Such
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Figure 8. Optimal vaccine coverage and the resulting reduction
in influenza incidence. (a) Age-specific optimal vaccine coverage
levels are illustrated when both optimal strategies of vaccination
and social distancing are used. (b) The percent age-specific reduc-
tions in infected (symptomatic) classes are shown relative to the
situation where no intervention is applied.

epidemiological impact is achieved even if optimal vaccination levels are relatively
low. Specifically, when the maximum adherence level to social distancing is 0.3,
the optimal cumulative vaccination levels range from 15% among the elderly (age
65+) to 57% among preschool-age children, leading to an average of 25% vaccine
coverage levels overall (Fig 9(c)).

We also analyzed the effects of a basic reproductive ratio of seasonal influenza on
the optimal control strategies of vaccination and social distancing. The reproduc-
tive ratio for seasonal influenza is estimated to be <0 = 1.6− 3.0 [46]. Our results
indicate that with a higher basic reproductive ratio (<0 = 2.5), the optimal rate of
vaccination (and thus optimal vaccine coverage levels) increases for all age groups
(Fig 10). Furthermore, the duration for which we should implement vaccination
for the youngest age group at maximum effort at the beginning of the outbreak
increases. With <0 = 2.5, 29% of the population would be clinically infected with-
out control measures, resulting in a risk of infection in the range of 26% to 33% in
the youngest age group (age 0 − 5) and among the elderly (age 65+), respectively.
When optimal dual strategies are applied (vaccination and social distancing of clin-
ical cases), the highest optimal vaccine coverage, 71%, is achieved among pre-school
children (aged 0 − 5) and adults (aged 20 − 59). On average, the overall optimal
vaccination coverage across age groups is estimated to be 67%, reducing sympto-
matic infections by 82%. On the other hand, as <0 increases, the duration for which
we should implement social distancing at maximum effort at the beginning of the
outbreak decreases. For the case where <0 = 2.5, the optimal control function,
ρi(t) is at a maximum for just over 40 days, compared to more than 60 days when
<0 = 1.85. In addition, optimal social distancing for individuals of age 6 or greater
is reduced once the peak of an outbreak appears.

4. Discussion. To evaluate optimal strategies of vaccination and social distanc-
ing against seasonal influenza, we used a mathematical model of the transmis-
sion dynamics of seasonal influenza that accounted for age heterogeneity in disease
transmissibility, in addition to age-specific rates of infection, hospitalization, and
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Figure 9. The impact of the upper bound for the probability of
social distancing (ρmax) on the optimal control strategies, ψi(t)
and ρi(t). In this simulations, ρmax was increased to 0.5. (a) The
age-specific optimal vaccination rates are calculated. Figure leg-
ends indicate age groups (Table 1). (b) The age-specific optimal
strategies of social distancing are calculated. (c) Age-specific lev-
els of cumulative vaccination when optimal vaccination strategy
is applied. (d) The corresponding daily incidence of symptomatic
infections, Σ6

i=1Ii(t), under no controls with those generated with
optimal vaccination control are compared.

death. Our mathematical framework incorporated time-dependent social distanc-
ing of symptomatic cases and vaccination rates into the optimal control framework.
We computed optimal vaccination policies and analyzed them in the absence and
presence of social distancing. Earlier implementation of vaccination has always the
greatest effect on the final size of infected individuals. Furthermore, dual strategies
are more efficient at reducing the final epidemic size than a single vaccination policy.
The simulation of the model with two controls (dual policy) showed that increasing
the basic reproductive ratio would result in higher optimal vaccination rates, but
lower levels of social distancing.

Our results further indicate that the optimal vaccination coverage differs between
age groups both in the absence and presence of social distancing. Specifically, the
highest vaccination rate is allocated to 0-5 year olds, followed by adults (age 20-
59), school-age children (age 6-19), and the elderly (age 65+), both in the absence
and presence of social distancing. This pattern was consistent for a higher basic
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Figure 10. The impact of a basic reproductive ratio (<0) on the
optimal control strategies, ψi(t) and ρi(t). In this simulations, <0

was increased to 2.5. (a) The age-specific optimal vaccination rates
are calculated. Figure legends indicate age groups (Table 1). (b)
The age-specific optimal strategies of social distancing are calcu-
lated.

reproductive ratio (i.e. higher transmissibility of influenza virus) and for a higher
cost of vaccination. Our analysis confirmed that relatively high contact rates within
the pre-school age group (0-5 yr) and their smaller population size (thus relatively
lower cost for vaccinating this age group than others) resulted in the highest optimal
vaccination rate, both in the absence and presence of social distancing. Overall, the
optimal vaccination strategy provided relatively high reductions of over 63% for
all age groups in the number of symptomatic cases with our baseline parameters.
Our findings also indicate that the duration of the intensive vaccination period for
optimal policy depends on the transmissibility of the virus and on vaccination cost.
Specifically, the higher the transmissibility of the virus is, the longer the intensive
vaccination efforts need to be implemented. On the other hand, higher cost of
vaccine implementation tends to shorten the duration of optimal vaccination.

Our results suggest that annual influenza vaccination of preschool-age children
should be strongly encouraged. Infection rates among children are relatively high
during typical influenza seasons, averaging 25%− 43%, and their epidemic peak is
earlier than for other age groups [51]. In addition, younger children are most re-
sponsible for the transmission of influenza, especially within households [51]. Thus,
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routine childhood vaccination would prevent a substantial number of influenza cases
by directly protecting the children. Routine vaccination would also generate exter-
nal benefits by reducing disease transmission among the rest of the population.

Contact reduction measures among clinical cases can also be an effective part of
mitigation strategies. The advantage of such measures over vaccination is that these
measures do not need to be limited, i.e. they can be continued for a sufficiently
long period of time. As shown for other disease outbreaks such as SARS and
pandemic influenza ([9, 49]), self-isolation and social distancing measures can be
highly effective, reducing the transmission of disease significantly. Therefore, control
strategies of seasonal influenza should include efforts to encourage social distancing
as well as early vaccination.

Appendix. The contact matrix φij represents the mixing rate between individuals
of age group i and j per day ([25, 50]), which is given by

φij =

















24.16 4.50 2.54 4.93 2.26 1.64
4.50 39.22 4.62 4.98 2.94 1.64
2.54 4.62 32.04 7.25 5.36 2.14
4.93 4.98 7.25 10.81 7.06 3.58
2.26 2.94 5.36 7.06 8.75 4.71
1.64 1.64 2.14 3.58 4.71 7.75

















.

Acknowledgments. Research reported in this publication was supported by the
National Institute of General Medical Science of the National Institutes of Health
under award number U54GM088491.

REFERENCES

[1] R. M. Anderson and R. M. May, “Infectious Diseases of Humans,” Oxford University Press,
Oxford, 1991.

[2] H. Behnke, Optimal control of deterministic epidemics, Optimal Control Application Meth-
ods, 21 (2000), 269–285.

[3] K. J. Bolton, J. M. McCaw, R. Moss, R. S. Morris, S. Wang, A. Burma, B. Darma, D.
Narangerel, P. Nymadawa and J. McVernon, Likely effectiveness of pharmaceutical and non-
pharmaceutical interventions for mitigating influenza virus transmission in Mongolia, Bull
World Health Organization, 90 (2012), 264–271.

[4] F. Brauer and C. Castillo-Chavez, “Mathematical Models in Population Biology and Epi-
demiology,” 2nd edition, Texts in Applied Mathematics, 40, Springer, New York, 2012.

[5] J. S. Brownstein, K. P. Kleinman and K. D. Mandl, Identifying pediatric age groups for
influenza vaccination using a real-time regional surveillance system, Am. J. Epidemiol, 162
(2005), 1–8.

[6] K. M. Clements, J. Chancellor, K. Nichol, K. DeLong and D. Thompson, Cost-effectiveness of
a recommendation of universal mass vaccination for seasonal influenza in the United States,
Value Health, 14 (2011), 800–811.

[7] G. Chowell, C. Viboud, X. Wang, S. M. Bertozzi and M. A. Miller, Adaptive vaccination
strategies to mitigate pandemic influenza: Mexico as a case study , PLoS One, 4 (2009),
e8164.

[8] O. Diekmann and J. Heesterbeek, “Mathematical Epidmeiology of Infectious Diseases: Model
Building, Analysis and Interpretation,” Wiley Series in Mathematical and Computational
Biology, John Wiley & Sons, Ltd., Chichester, 2000.

[9] H. P. Duerr, S. O. Brockmann, I. Piechotowski, M. Schwehm and M. Eichner, Influenza
pandemic intervention planning using InfluSim: Pharmaceutical and non-pharmaceutical in-
terventions, BMC Infect. Dis., 7 (2007).

[10] W. H. Fleming and R. W. Rishel, “Deterministic and Stochastic Optimal Control,” Applica-
tions of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.

http://www.ams.org/mathscinet-getitem?mr=MR1822058&return=pdf
http://dx.doi.org/10.1002/oca.678
http://www.ams.org/mathscinet-getitem?mr=MR3024808&return=pdf
http://dx.doi.org/10.1093/aje/kwi257
http://dx.doi.org/10.1016/j.jval.2011.03.005
http://dx.doi.org/10.1371/journal.pone.0008164
http://www.ams.org/mathscinet-getitem?mr=MR1882991&return=pdf
http://dx.doi.org/10.1186/1471-2334-7-76
http://www.ams.org/mathscinet-getitem?mr=MR0454768&return=pdf


1632 EUNHA SHIM

[11] A. P. Galvani, T. C. Reluga and G. B. Chapman, Long-standing influenza vaccination policy
is in accord with individual self-interest but not with the utilitarian optimum, Proc. Natl.
Acad. Sci. USA, 104 (2007), 5692–5697.

[12] R. Gasparini, D. Amicizia, P. L. Lai and D. Panatto, Clinical and socioeconomic impact of
seasonal and pandemic influenza in adults and the elderly , Hum. Vaccin. Immunother., 8
(2012), 21–28.

[13] R. J. Glass, L. M. Glass, W. E. Beyeler and H. J. Min, Targeted social distancing design for
pandemic influenza, Emerg. Infect. Dis., 12 (2006), 1671–1681.

[14] J. Glasser, Z. Feng, A. Moylan, S. Del Valle and C. Castillo-Chavez, Mixing in age-structured
population models of infectious diseases, Math. Biosci., 235 (2012), 1–7.

[15] J. Glasser, D. Taneri, Z. Feng, J. H. Chuang, P. Tll, W. Thompson, M. McCauley and J.
Alexander, Evaluation of targeted influenza vaccination strategies via population modeling ,
PLoS One, 5 (2010), e12777.

[16] P. A. Gonzalez-Parra, S. Lee, L. Velazquez and C. Castillo-Chavez, A note on the use of
optimal control on a discrete time model of influenza dynamics, Math. Biosci. Eng., 8 (2011),
183–197.

[17] T. M. Govaert, C. T. Thijs, N. Masurel, M. J. Sprenger, G. J. Dinant and J. A. Knot-
tnerus, The efficacy of influenza vaccination in elderly individuals. A randomized double-blind
placebo-controlled trial, JAMA, 272 (1994), 1661–1665.

[18] P. A. Gross, A. W. Hermogenes, H. S. Sacks, J. Lau and R. A. Levandowski, The efficacy
of influenza vaccine in elderly persons. A meta-analysis and review of the literature, Ann.
Intern. Med., 123 (1995), 518–527.

[19] N. Halder, J. K. Kelso and G. J. Milne, Cost-effective strategies for mitigating a future
influenza pandemic with H1N1 2009 characteristics, PLoS One, 6 (2011), e22087.

[20] J. S. Horvath, M. McKinnon and L. Roberts, The Australian response: Pandemic influenza
preparedness, Med. J. Aust., 185 (2006), S35–8.

[21] M. J. Keeling and L. Danon, Mathematical modelling of infectious diseases, Br. Med. Bull.,
92 (2009), 33–42.

[22] M. J. Keeling and P. J. White, Targeting vaccination against novel infections: Risk, age
and spatial structure for pandemic influenza in Great Britain, J. R. Soc. Interface, 8 (2011),
661–670.

[23] J. K. Kelso, G. J. Milne and H. Kelly, Simulation suggests that rapid activation of social
distancing can arrest epidemic development due to a novel strain of influenza, BMC Public
Health, 9 (2009).

[24] S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role
of limited antiviral treatment and isolation, J. Theor. Biol., 265 (2010), 136–150.

[25] S. Lee, M. Golinski and G. Chowell, Modeling optimal age-specific vaccination strategies
against pandemic influenza, Bull. Math. Biol., 74 (2012), 958–980.

[26] S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strate-
gies when supply is limited , Math. Biosci. Eng., 8 (2011), 171–182.

[27] V. J. Lee, D. C. Lye and A. Wilder-Smith, Combination strategies for pandemic influenza
response - a systematic review of mathematical modeling studies, BMC Med., 7 (2009).

[28] S. Lenhart and J. T. Workman, “Optimal Control Applied to Biological Models,” Chapman
& Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca
Raton, FL, 2007.

[29] F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharma-
ceutical interventions, BMC Infect. Dis., 10 (2010).

[30] I. M. Longini, Jr. and M. E. Halloran, Strategy for distribution of influenza vaccine to high-
risk groups and children, Am. J. Epidemiol., 161 (2005), 303–306.

[31] A. M. McBean and P. L. Hebert, New estimates of influenza-related pneumonia and influenza
hospitalizations among the elderly , Int. J. Infect. Dis., 8 (2004), 227–235.

[32] J. Medlock and A. P. Galvani, Optimizing influenza vaccine distribution, Science, 325 (2009),
1705–1708.

[33] G. N. Mercer, S. I. Barry and H. Kelly, Modelling the effect of seasonal influenza vaccination
on the risk of pandemic influenza infection, BMC Public Health, 11 (2011), S11.

[34] S. M. Moghadas, C. S. Bowman, G. Rst and J. Wu, Population-wide emergence of antiviral
resistance during pandemic influenza, PLoS One, 3 (2008), e1839.

http://dx.doi.org/10.1073/pnas.0606774104
http://dx.doi.org/10.4161/hv.8.1.17622
http://dx.doi.org/10.3201/eid1211.060255
http://www.ams.org/mathscinet-getitem?mr=MR2901022&return=pdf
http://dx.doi.org/10.1016/j.mbs.2011.10.001
http://dx.doi.org/10.1371/journal.pone.0012777
http://www.ams.org/mathscinet-getitem?mr=MR2764150&return=pdf
http://dx.doi.org/10.3934/mbe.2011.8.183
http://dx.doi.org/10.7326/0003-4819-123-7-199510010-00008
http://dx.doi.org/10.1371/journal.pone.0022087
http://dx.doi.org/10.1093/bmb/ldp038
http://dx.doi.org/10.1098/rsif.2010.0474
http://dx.doi.org/10.1186/1471-2458-9-117
http://www.ams.org/mathscinet-getitem?mr=MR2981541&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2010.04.003
http://www.ams.org/mathscinet-getitem?mr=MR2903017&return=pdf
http://dx.doi.org/10.1007/s11538-011-9704-y
http://www.ams.org/mathscinet-getitem?mr=MR2764149&return=pdf
http://dx.doi.org/10.3934/mbe.2011.8.171
http://dx.doi.org/10.1186/1741-7015-7-76
http://www.ams.org/mathscinet-getitem?mr=MR2316829&return=pdf
http://dx.doi.org/10.1186/1471-2334-10-32
http://dx.doi.org/10.1016/j.ijid.2004.04.013
http://dx.doi.org/10.1126/science.1175570
http://dx.doi.org/10.1186/1471-2458-11-S1-S11
http://dx.doi.org/10.1371/journal.pone.0001839


OPTIMAL SOCIAL DISTANCING AND VACCINATION 1633

[35] N. A. Molinari, I. R. Ortega-Sanchez, M. L. Messonnier, W. W. Thompson, P. M. Wortley, E.
Weintraub and C. B. Bridges, The annual impact of seasonal influenza in the US: Measuring
disease burden and costs, Vaccine, 25 (2007), 5086–5096.

[36] S. D. Mylius, T. J. Hagenaars, A. K. Lugnr and J. Wallinga, Optimal allocation of pandemic
influenza vaccine depends on age, risk and timing , Vaccine, 26 (2008), 3742–3749.

[37] H. Nishiura, C. Castillo-Chavez, M. Safan and G. Chowell, Transmission potential of the new
influenza A(H1N1) virus and its age-specificity in Japan, Euro. Surveill., 14 (2009), 19227.

[38] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, “The Mathe-
matical Theory of Optimal Processes,” Interscience Publishers John Wiley & Sons, Inc., New
York-London, 1962.

[39] O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez,
Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 in-
fluenza, Math. Biosci. Eng., 8 (2011), 141–170.

[40] E. Shim, L. A. Meyers and A. P. Galvani, Optimal H1N1 vaccination strategies based on
self-interest versus group interest , BMC Public Health, 11 (2011), S4.

[41] L. Simonsen, T. A. Reichert, C. Viboud, W. C. Blackwelder, R. J. Taylor and M. A. Miller,
Impact of influenza vaccination on seasonal mortality in the US elderly population, Arch.
Intern. Med., 165 (2005), 265–272.

[42] J. M. Tchuenche, S. A. Khamis, F. B. Agusto and S. C. Mpeshe, Optimal control and sen-
sitivity analysis of an influenza model with treatment and vaccination, Acta Biotheor, 59
(2011), 1–28.

[43] W. W. Thompson, D. K. Shay, E. Weintraub, L. Brammer, C. B. Bridges, N. J. Cox and
K. Fukuda, Influenza-associated hospitalizations in the United States, JAMA, 292 (2004),
1333–1340.

[44] W. W. Thompson, D. K. Shay, E. Weintraub, L. Brammer, N. Cox, L. J. Anderson and
K. Fukuda, Mortality associated with influenza and respiratory syncytial virus in the United
States, JAMA, 289 (2003), 179–186.

[45] S. Towers and Z. Feng, Social contact patterns and control strategies for influenza in the
elderly , Math. Biosci., 240 (2012), 241–249.

[46] J. Truscott, C. Fraser, S. Cauchemez, A. Meeyai, W. Hinsley, C. A. Donnelly, A. Ghani and
N. Ferguson, Essential epidemiological mechanisms underpinning the transmission dynamics

of seasonal influenza, J. R. Soc. Interface, 9 (2012), 304–312.
[47] A. R. Tuite, D. N. Fisman, J. C. Kwong and A. L. Greer, Optimal pandemic influenza vaccine

allocation strategies for the Canadian population, PLoS One, 5 (2010), e10520.
[48] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–
48.

[49] J. Wallinga and P. Teunis, Different epidemic curves for severe acute respiratory syndrome
reveal similar impacts of control measures, Am. J. Epidemiol., 160 (2004), 509–516.

[50] J. Wallinga, P. Teunis and M. Kretzschmar, Using data on social contacts to estimate age-spe-
cific transmission parameters for respiratory-spread infectious agents, Am. J. Epidemiol., 164
(2006), 936–944.

[51] D. Weycker, J. Edelsberg, M. E. Halloran, I. M. Longini, Jr., A. Nizam, V. Ciuryla and G.
Oster, Population-wide benefits of routine vaccination of children against influenza, Vaccine,
23 (2005), 1284–1293.

[52] J. T. Wu and B. J. Cowling, The use of mathematical models to inform influenza pandemic
preparedness and response, Exp. Biol. Med. (Maywood), 236 (2011), 955–961.

[53] P. Zhang and P. M. Atkinson, Modelling the effect of urbanization on the transmission of an
infectious disease, Math. Biosci., 211 (2008), 166–185.

[54] U.S. Census Bureau, International Data Base. Available from:
http://www.census.gov/population/international/data/idb/region.php.

[55] Centers For Disease Control and Prevention, Large-scale vaccination clinic
output and staffing estimates: An example, (2009). Available from:
www.cdc.gov/h1n1flu/vaccination/pdf/A-Wortley-H1N1-sample-clinic.pdf.

[56] Centers For Disease Control and Prevention, Use of influenza A (H1N1) 2009 monovalent
vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP),
2009, MMWR Recomm. Rep., 58(RR-10) (2009), 1–8.

http://dx.doi.org/10.1016/j.vaccine.2007.03.046
http://dx.doi.org/10.1016/j.vaccine.2008.04.043
http://www.ams.org/mathscinet-getitem?mr=MR0166037&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2764148&return=pdf
http://dx.doi.org/10.3934/mbe.2011.8.141
http://dx.doi.org/10.1186/1471-2458-11-S1-S4
http://dx.doi.org/10.1007/s10441-010-9095-8
http://dx.doi.org/10.1001/jama.292.11.1333
http://dx.doi.org/10.1001/jama.289.2.179
http://www.ams.org/mathscinet-getitem?mr=MR3000376&return=pdf
http://dx.doi.org/10.1016/j.mbs.2012.07.007
http://dx.doi.org/10.1098/rsif.2011.0309
http://dx.doi.org/10.1371/journal.pone.0010520
http://www.ams.org/mathscinet-getitem?mr=MR1950747&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1093/aje/kwh255
http://dx.doi.org/10.1093/aje/kwj317
http://dx.doi.org/10.1016/j.vaccine.2004.08.044
http://dx.doi.org/10.1258/ebm.2010.010271
http://www.ams.org/mathscinet-getitem?mr=MR2392419&return=pdf
http://dx.doi.org/10.1016/j.mbs.2007.10.007
http://www.census.gov/population/international/data/idb/region.php
www.cdc.gov/h1n1flu/vaccination/pdf/A-Wortley-H1N1-sample-clinic.pdf


1634 EUNHA SHIM

[57] Centers For Disease Control and Prevention, Preventing emerging infectious diseases: A
strategy for the 21st century. Overview of the updated CDC plan, MMWR Recomm. Rep.,
47(RR-15) (1998), 1–14.

Received October 31, 2012; Accepted March 17, 2013.

E-mail address: eunha-shim@utulsa.edu

mailto:eunha-shim@utulsa.edu

	1. Introduction
	2. Method
	3. Numerical results
	3.1. Optimal vaccination strategy
	3.2. Optimal combined strategy of vaccination and social distancing

	4. Discussion
	Appendix
	Acknowledgments
	REFERENCES

