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Abstract. Dosage and frequency of treatment schedules are important for

successful chemotherapy. However, in this work we argue that cell-kill response

and tumoral growth should not be seen as separate and therefore are essential
in a mathematical cancer model. This paper presents a mathematical model for

sequencing of cancer chemotherapy and surgery. Our purpose is to investigate

treatments for large human tumours considering a suitable cell-kill dynamics.
We use some biological and pharmacological data in a numerical approach,

where drug administration occurs in cycles (periodic infusion) and surgery is

performed instantaneously. Moreover, we also present an analysis of stability
for a chemotherapeutic model with continuous drug administration. According

to Norton & Simon [22], our results indicate that chemotherapy is less efficient
in treating tumours that have reached a plateau level of growing and that a

combination with surgical treatment can provide better outcomes.

1. Introduction. Cancer is considered a serious public health problem worldwide.
According to data provided by the World Health Organization (WHO) [32], 7.6
million people worldwide died from cancer in 2008, approximately 70% of cancer
deaths occur in low- and middle-income countries and 30% of cancers could be
prevented. One of the most applied type of cancer treatment is antineoplastic
chemotherapy, which utilizes various approaches in order to eliminate tumour cells:
the administration of one or more cycle-nonspecific or cycle-specific drug, used
in conjunction (or not) with other treatments. Said drug is usually administered
periodically, that is, in cycles.

The evolution of cancer treatment and its difficulties is a very interesting part of
the history of science (Mukherjee [20]), including chemotherapy. Chemotherapy uses
drugs to kill tumour cells, decrease their growth rate or ameliorate the symptoms of
the disease presented by the patient. Neoadjuvant chemotherapy is designed to be
applied before any surgical procedure, and its aim is the reduction of the tumoral
mass, as well as to facilitate the surgeon’s task of distinguishing normal cells from
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tumour cells. Another form of chemotherapy is that which is known as adjuvant,
which is applied after other treatments, such as radiotherapy or surgery, aiming to
reduce the chance of recurrence and metastasis (the spread of a disease from one
organ or part to another non-adjacent part).

One fundamental pattern in cancer development is angiogenesis, in which a neo-
vascularization process is started by the tumour. It consists, basically, of the mi-
gration of capillary sprouts stimulated by substances known as Tumoral Angiogenic
Factors (TAF). However, there are other substances that inhibit tumoral neovascu-
larization, the Tumoral Inhibitor Factors (TIF). In our proposed model, the angio-
genesis process is considered in a steady state level, that is, in equilibrium (Ferrara
& Gerber [9]).

Mathematical models are very important in the understanding of the effects of
drug administration in chemotherapy (Fister & Panetta [10], Martin et al. [15]) and
cancer chemotherapy failures (Pinho et al. [24], Rodrigues et al. [25]). Because the
amount of the drug administered should be minimized, many papers address the
optimal control problem (de Pillis & Radunskaya [4], de Pillis et al. [5], d’Onofrio
et al. [6]). Other deals with multi-scale simulation (Stamatakos et al. [30]), Monte
Carlo models (Marcu et al. [14]) and ordinary differential equations (for example,
Pinho et al. [23]). However, only a few papers have been dedicated to cell-kill
dynamics, as Kohandel et al. [13].

Regarding the modelling of tumour cell mortality rates caused by chemothera-
peutic agents, Skipper et al. [28] conjecture that a given dose of chemotherapy kills
a fixed fraction of the remaining cells – a hypothesis known as the log-kill. Another
approach by Norton & Simon [22] hypothesized that cell-kill is proportional to the
growth rate of the tumour population, in a exponential, logistic or Gompertzian
manner. It must be emphasized that these are different models of tumoral pharma-
codynamics and that in general, one is not necessarily more effective than the other.
However, in particular cases one is the more appropriate choice. For chemotherapy
of large human tumours, that is, those that have reached a saturated level of growth,
the log-kill model is not suitable – otherwise all solid tumours would be potentially
curable, assuming the anticancer drugs utilized had a sufficiently large fractional
kill rate. Therefore, we argue that the Norton-Simon hypothesis provides a better
explanation in such situations, as large human tumours grow more slowly than small
tumours. We refer only to human tumours because “non-human” tumours do not
always show sigmoidal growth curves (see Browder et al. [2] for a counter-example
of an exponential growth of the tumour in mice). In this way, we focus our analysis
on this treatment, considering the normal and tumour cell growth behaviour given
by logistic equation, which has been shown to be a more accurate choice for the
purposes of modelling the growth of some human tumours (Vaidya & Alexandro-Jr.
[31]).

In this paper, we present a model that is based on previous work by Rodrigues
et al. [25], in which the fundamental difference lies in the drug functional response.
In spite there existing only this difference, we have added another kind of treat-
ment (surgery) in order to investigate treatments of large human tumours under
the Norton-Simon hypothesis (Norton & Simon [22]). We performed numerical
simulations using some data for the model parameters and tumour/normal cells.
Moreover, we analysed the stability of the system of ordinary differential equations
– only as it regarded chemotherapy involving continuous drug administration. Our
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simulations provide a mathematical explanation for why chemotherapy often fails
when it is used to treats large human tumours.

This paper has the following structure: In section 2, we present the proposed
model. In section 3, we analyse the local stability of equilibrium. Section 4 contains
simulations of treatment involving chemotherapy and surgery. In section 5, the
conclusions are presented.

2. Model. We consider a mathematical model formed by 3 ordinary differential
equations whose compartments are tumour cells, normal cells and chemotherapeutic
agent. For chemotherapy, we reference just one cycle-nonspecific drug.

Denoting the number of tumour and normal cells by Ni (i = 1, 2) and the dose of
chemotherapeutic agent by Q, we propose the following model based on Rodrigues
et al. [25, 26]:

dN1

dt
= r1N1

(
1− N1

k1
− α12

k1
N2

)
− µ r1N1

(
1− N1

k1

)
Q

dN2

dt
= r2N2

(
1− N2

k2
− α21

k2
N1

)
− ν r2N2

(
1− N2

k2

)
Q

dQ

dt
= q − λQ

, (1)

where the index i = 1 is associated with the tumour cell population and i = 2 with
the normal cell population, ri > 0 denotes the rate of growth of the tumour and
normal populations; the flux of infusion of the chemotherapeutic agent is modelled
by the function q defined in [ 0,∞) and satisfying q(·) ≥ 0; αij is the competition
coefficient on the population Ni due to Nj (adimensional); k1 is the carrying ca-
pacity of tumour cells and k2 is the carrying capacity of the normal cells; µ = 1

m

and ν = 1
n , where m and n are the numbers of molecules (or unit of drugs) up-

taken by, respectively, tumour and normal cells, to effectively kill them, and it is
supposed to be n > m; λ > 0 is the washout rate of a given agent cycle-nonspecific
chemotherapy.

Although it is important to analyse the stability of the tumour-free equilibrium
in the absence of chemotherapy, we do not do this because Q(0) = 0 and q(·) ≡ 0
represent no treatment and system (1) becomes a Lotka-Volterra model, which has
been proposed and analysed by Gatenby [11].

In order to focus on the connection between drug effect and tumour growth, we
use the simplest pharmacokinetic and pharmacodynamic models. For pharmacoki-
netics, we consider the decay of the drug plasma concentration to be exponential
(see Bellman [1], Martin [17]). Regarding pharmacodynamics, we use a much sim-
pler functional response than the Michaelis-Menten response: linear in Q, in order
to focus on the saturation of tumour growing we neglect additional non-linearities in
the amount of the drug. We use only one chemotherapic drug, since polychemother-
apy includes drug-drug interactions and synergy/antagonism relations are difficult
to model.

Due to previous research (Rodrigues et al. [26]) we do not consider angiogene-
sis explicitly in the proposed model (1), since we suppose that: a) In t = t0, the
neovascularization process is in a stable steady-state; TAF and TIF have reached
equilibrium, and b) there is no significant antiangiogenic effect of chemotherapeutic
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drug on endothelial vascular cells. With regard to a), we know that tumoral an-
giogenesis occurs firstly, and that after this neovascularization the tumour growth
is more pronounced (Ferrara & Gerber [9]). Related to item b), we consider only
conventional schedules in which antiangiogenic effects are inexistent or negligible,
and therefore metronomic schedules cannot be considered (see Browder et al. [2]
for both cases).

3. Equilibrium solutions: Local stability. Considering that q(t) is constant
(autonomous system), the equilibrium points of (1) are given by the following ex-
pressions, where Q = q

λ :

• P1 = (0, 0, Q);
• P2 = (0, k2, Q);
• P3 = (k1, 0, Q);
• P4 = (N1, N2, Q).

We now define both νc and µc, which can assume positive or negative values, but
are bounded by νc < 1 and µc < 1. Assuming that α12 > 0 and α21 > 0, we have

νc = 1− k1
k2
α21, (2)

µc = 1− k2
k1
α12. (3)

We write N1 and N2 as

N1 =
µ ν k1

(
1
ν −Q

) (
µc

µ −Q
)

b
, (4)

N2 =
µ ν k2

(
νc
ν −Q

) (
1
µ −Q

)
b

, (5)

where
b = µ ν Q2 − (µ+ ν)Q+ (1− α12 α21) . (6)

We now analyse the local stability of the equilibrium points (from the Jacobian
matrix).

The equilibrium point P1 = (0, 0, Q) is stable if Q > 1
ν and Q > 1

µ . This situation

implies that the amount of the drug administered is greater than the amount of the
drug uptaken by both normal and tumour cells. As our goal is the survival of the
patient, P1 must be unstable.

The second point P2 = (0, k2, Q) is stable if Q < 1
ν and Q > µc

µ (or, µc

µ < Q < 1
ν ).

Therefore, in successful treatment, the amount of the drug administered is less than
the amount of drug uptaken by normal cells and greater than a threshold value for
tumour cells elimination. We note that for µc < 0 only Q < 1

ν results in the stability
of P2.

The third point P3 = (k1, 0, Q) is stable if Q > νc
ν and Q < 1

µ (or, νcν < Q < 1
µ ).

Therefore, this situation implies that the amount of the drug administered is less
than the amount of drug uptaken by tumour cells and greater than a threshold
value above which normals cells are destroyed. Again, we expect the survival of the
patient, rendering P3 biologically unfeasible. For νc < 0, only Q < 1

µ allows for the

stability of P3.
The local stability analysis for P4 = (N1, N2, Q) is now presented. The Jacobian

matrix corresponding to P4 is given by
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) ]
and its stability is given by tr(J) < 0 and det(J) > 0.

The trace is

tr(J) =
r1N1

k1
µ

(
Q− 1

µ

)
+
r2N2

k2
ν

(
Q− 1

ν

)
. (7)

We have tr(J) < 0 if Q < 1
µ and Q < 1

ν .

The determinant is given by

det(J) =
r1N1

k1

r2N2

k2
b. (8)

Let us analyze the sign of b. We observe that N1 and N2 contains the term b,
but it does not influence in the sign of det(J) because it appears as a square. We
obtain two positive roots, since the discriminant of the second degree polinomial is
positive, and the minor is

Q< =
µ<c
µ

=
ν<c
ν
, (9)

where

µ<c =
(µ+ ν)−

√
(µ− ν)

2
+ 4µ ν α12 α21

2ν
(10)

and

ν<c =
(µ+ ν)−

√
(µ− ν)

2
+ 4µ ν α12 α21

2µ
. (11)

It is not difficulty to show that µ<c < 1 and ν<c < 1.
The greater value is

Q> =
µ>c
µ

=
ν>c
ν
, (12)

where

µ>c =
(µ+ ν) +

√
(µ− ν)

2
+ 4µ ν α12 α21

2ν
(13)

and

ν>c =
(µ+ ν) +

√
(µ− ν)

2
+ 4µ ν α12 α21

2µ
. (14)

It is easy to show that µ>c > 1 and ν>c > 1.
Hence, if Q < Q< or Q > Q>, we have b > 0; otherwise Q< < Q < Q>, and

b < 0. If b > 0, then det(J) > 0, which is true if Q < Q<. The other possibility
Q > Q>, when b > 0, results in tr(J) > 0.

Let us compare µc and µ<c (also νc and ν<c ), by defining, for µ > ν,
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kc1 =
k2
α21

µ− ν
2µ

[√
1 +

4µ ν α12 α21
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2 + 1

]

= k2 α12
2ν

µ− ν
1[√

1 + 4µ ν α12 α21
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] . (15)

• For a low carrying capacity of tumour cells, that is, if k1 < kc1 then we have
µc < µ<c and νc > ν<c .

• For a high carrying capacity of tumour cells, that is, if k1 > kc1 then we have
µc > µ<c and νc < ν<c .

For µ < ν,

kd1 =
k2
α21

ν − µ
2µ

[√
1 +

4µ ν α12 α21

(ν − µ)
2 − 1

]

= k2 α12
2ν

ν − µ
1[√

1 + 4µ ν α12 α21

(ν−µ)2 + 1
] . (16)

• For a low carrying capacity of tumour cells, that is, if k1 < kd1 then µc < µ<c
and νc > ν<c .

• For a high carrying capacity of tumour cells, that is, if k1 > kd1 then µc > µ<c
and νc < ν<c .

Summarizing the stability of P4 = (N1, N2, Q), for the case µ > ν (biologically
relevant):

• Low carrying capacity of tumour cells (decreased N2), k1 < kc1: We have

µc < µ<c and νc > ν<c . P4 is stable if Q < µc

µ = min
{
µc

µ ,
ν<
c

ν

}
, the minimum

value between µc

µ and
ν<
c

ν . However, for µc < 0, P4 is unstable.

• High carrying capacity of tumour cells (increased N2), k1 > kc1: We have

µc > µ<c and νc < ν<c . P4 is stable if Q < νc
ν = min

{
νc
ν ,

µ<
c

µ

}
. However, for

νc < 0, P4 is unstable.

For µ < ν (biologically irrelevant), the only change is kd1 , instead of kc1. In the
Appendix we present further results related to the stability of P4.

3.1. Stability analysis with varying Q. The situation µ > ν or 1
ν >

1
µ represents

a biologically relevant phenomenon, because the drug kills more tumour cells than
normal cells. For example, according to Buick [3], the drug effect in lymphomas is up
to 104 times higher than in bone marrow cells. Again we note that µc

µ = νc
ν = Q<.

Varying Q, the stable equilibrium point(s) are presented:

1. Strong interaction between normal and tumour cells: k2α12 > k1 (µc < 0)
and k1α21 > k2 (νc < 0), or, equivalently, α12α21 > 1.
(a) For µ > ν (biologically relevant) we have:

• If Q > 1
ν , then P1 is stable;

• If 1
µ < Q < 1

ν , then P2 is stable;

• If Q < 1
µ , then P2 and P3 are stable.

(b) For µ < ν (biologically irrelevant) we have:
• If Q > 1

µ , then P1 is stable;
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• If 1
ν < Q < 1

µ , then P3 is stable;

• If Q < 1
ν , P2 and P3 are stable.

2. Normal cells strongly inhibiting tumour cells: k2α12 > k1 (µc < 0) and
k1α21 < k2 (νc > 0).
(a) For µ > ν (biologically relevant) we have:

• If Q > 1
ν , then P1 is stable;

• If 1
µ < Q < 1

ν , then P2 is stable;

• If νc
ν < Q < 1

µ , then P2 and P3 are stable;

• If Q < νc
ν , then P2 is stable.

(b) For µ < ν (biologically irrelevant) we have:
• If Q > 1

µ , then P1 is stable;

• If 1
ν < Q < 1

µ , then P3 is stable;

• If νc
ν < Q < 1

ν , then P2 and P3 are stable;
• If Q < νc

ν , then P2 is stable
3. Tumour cells strongly inhibiting normal cells: k2α12 < k1 (µc > 0) and
k1α21 > k2 (νc < 0).
(a) For µ > ν (biologically relevant) we have:

• If Q > 1
ν , then P1 is stable;

• If 1
µ < Q < 1

ν , then P2 is stable;

• If µc

µ < Q < 1
µ , then P2 and P3 are stable;

• If Q < µc

µ , then P3 is stable.

(b) For µ < ν (biologically irrelevant) we have:
• If Q > 1

µ , then P1 is stable;

• If 1
ν < Q < 1

µ , then P3 is stable;

• If µc

µ < Q < 1
ν , then P2 and P3 are stable;

• If Q < µc

µ , then P3 is stable.

4. Weak interaction between normal and tumour cells: k2α12 < k1 (µc > 0) and
k1α21 < k2 (νc > 0), or, equivalently, α12α21 < 1, with Q< = µc

µ = νc
ν .

(a) For µ > ν (biologically relevant) we have:
• If Q > 1

ν , then P1 is stable;

• If 1
µ < Q < 1

ν , then P2 is stable;

• If Q< < Q < 1
µ , then P2 and P3 are stable;

• If Q < Q<, then P4 is stable.
(b) For µ < ν (biologically irrelevant) we have:

• If Q > 1
µ , then P1 is stable;

• If 1
ν < Q < 1

µ , then P3 is stable;

• If Q< < Q < 1
ν , then P2 and P3 are stable;

• If Q < Q<, then P4 is stable.

In this subsection, we have shown the necessary and sufficient conditions to guar-
antee the stability of the equilibrium points, and that they are obtained imposing
constraints upon Q, the amount of the drug value.

4. Treatment: Numerical simulations. The purpose of the simulations is to
improve the understanding of cell-kill dynamics in tumour cells that are less affected
by some drug and tumours that are sensitive to some drug. Additionaly, we also
discuss the survival time of patients with large tumours under chemotherapy or
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chemotherapy–surgery. By survival time we mean the time interval between the
beginning of treatment and the instant for which the tumour reached 1012 cells.

For chemotherapy, following Martin & Theo [16], we define the infusion as

q(t) =

{
q > 0, n ≤ t < n+ τ,
0, n+ τ ≤ t < n+ T,

(17)

where T is the cycle time interval, n = 0, T, 2T, ... and τ is the infusion time with
T � τ (administration in bolus doses).

At the implementation of surgery, we assume instantaneous surgical performance
only on the tumour cell population, the death of a proportion a of those cells. Then

N1 ← aN1, in t = ts, (18)

where ts is the time of surgery and a is the fraction of the removed tumour cells
population. Since a is a fraction, mathematically we have 0 ≤ a ≤ 1, but in practice
there is a lower limit below which the tumour cannot be seen or detected, which
implies that a > 0. For example, a solid tumour is clinically palpable in humans
from 109 cells (≈ 1g) and visible in X-rays from 108 cells (Weinberg et al. [33]). For
the plateau level of tumoral growth, we know that people with neoplastic disease
usually do not survive for a long time after the tumour reaches around 1012 cells
(≈ 1 kg) (Spratt et al. [29], Weinberg et al. [33]). Therefore, we assumed that the
carrying capacity of tumour cells k1 is equal to 1012 cells.

An oncologic protocol established for breast cancer treatment is
FEC100 [8] (fluorouracil, epirubicin and cyclophosphamide) and requires among
other drugs, the intravenous application of cyclophosphamide in bolus at a dose of
500 mg/m2 of the body surface of the patient, every 21 days. We adopt this on-
cologic protocol, but considering that the treatment only with cyclophosphamide.
From a formula given by Mosteller [19], we estimate that the body surface of a
patient’s weight of 70 kg and height 1.70m is 1.8m2, thus establishing dose of 900
mg per cycle. In fact, the administration time of cyclophosphamide is much less
than 3 hours. However, we admit that this dose is infused into 3 hours because we
assume that the drug interacts immediately with the tumour and also because the
peak of plasma concentration of cyclophosphamide is approximately 3 hours after
infusion (MeadJohnson [18]). An infusion of 3 hours (1/8 day) implies a infusion
rate of 8× 900 = 7200 mg/day.

All the calculations were carried out with consideration for the parameters given
by Rodrigues et al. [26], but µ = 1.0 and ν = 8.0× 10−2, and are summarized and
reproduced in Table 1. At the instant of surgery t = ts, we consider the removal
of a fixed tumoral mass of 99,9%, that is, a = 0.001 in (18). In all simulations,
we adopt Q(0) = 0 and N1(0) = N2(0) = 1012 cells. The conventional schedule
considered has a cycle T of 21 days (4 infusions).

Now, we present the numerical simulations performed with Runge-Kutta 4th
order method. In all figures, we omitted the normal cells curve as its amount
remains almost constant over time, i.e., N2(t) ∼ 1012 = N2(0).

In order to simulate tumour cells that are less affected by chemotherapy we
decrease the µ value from 1.0 to 0.3. In Figures 1 and 2 we exhibit the temporal
evolution of the conventional schedule. We obtained an ineffective tumoral response
for µ = 0.3 when compared to µ = 1.0. It is crucial to note the behaviour in the
beginning of the treatment, where the therapy has no effect, implying almost no
tumoral response to the first two infusions (t = 0 and t = 21) even for drug-
sensitive tumours (thick solid line in Figure 1, a close-up of the Figure 2 from 0 to
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Table 1. Parameters values for model.
Parameter Value Unity Reference/Comments

r1 10−2 day−1 Spratt et al. [29]
r2 10−3 day−1 r2 < r1
k1 108 cell estimated value†
k2 1012 cell Weinberg [33], Spratt et al. [29]‡
α12 9× 10−5 - assumed value§

α21 9× 10−2 - assumed value§

λ 4.16 day−1 MeadJohnson [18]\

µ 1.0 or 0.3 mg−1 -
ν 0.08 mg−1 ν < µ (biologically relevant), Buick [3]

‡k2 can also be estimated considering that 109 cells equals 1g and an human adult has about

5× 1013 cells Schaebel [27].

†Following Spratt et al. [29], a 6mm-diameter tumour has 1.13× 108 cells, and Kerbel [12] afirms

that an avascular tumour has a diameter less or equal to 2mm.

§We assumed values with the same magnitude of cell-cell interactions and cell-drug interactions.

\The value of λ is calculated from equation dQ/dt with q(t) ≡ 0 (see system (1)) considering

cyclophosphamide has as elimination half-life t1/2 of 4 hours (MeadJohnson [18]), where

λ = ln 2/t1/2.

100 days). Nevertheless, we stress that the novelty here is that large human tumours
are more difficult to treat than the small human tumours due to Norton-Simon cell-
kill dynamics, specially if the tumour is not so affected by chemotherapeutic drug
(see thin solid line in Figure 1). In the log-kill hypothesis large or small tumours
exhibit the same behaviour: each infusion of the drug kills a fixed fraction of cells
that is proportional to the tumour size, but not to its growth dynamics. On the
contrary, in the Norton-Simon hypothesis tumoral growth dynamics are completely
relevant, and the cell-kill is not constant in a log-scale (see Figure 1).

Also regarding pharmacodynamic response, we note that the tumour as so af-
fected by chemotherapy as by its aggressiveness, because the treatment term is given
by −µr1N1(1−N1/k1)Q and r1 can be interpreted as a measure of aggressiveness,
but on the other hand, dynamics are also governed by r1N1(1−N1/k1). Therefore,
although an aggressive tumour is more sensitive to chemotherapy, it grows faster
than a non-agressive tumour when chemotherapy has already been completed. On
the topic of the untreated tumour dynamics, we show a simulation in Figures 1
and 2 where in the absence of chemotherapy, the coexistence equilibrium point is
stable (dashed line). In this way, we hold that in all our simulations we deal with a
tumour is not cured spontaneously – otherwise the use of chemotherapy would not
make sense.

Regarding the surgery simulation, Figure 3 shows the effect of surgery after
the application of the conventional schedule at ts = 100, exhibiting an increasing
survival time as it was expect. Surgery does not remove all tumour cells because in
practice there is a lower limit below which the tumour cannot be seen or detected
(again, we note that a solid tumour is clinically palpable in humans from 109 cells
(Weinberg et al. [33])) and then the tumour grows up again. However, surgery
provides a further increase in the survival time of the patient. In a similar way
given by Kohandel et al. [13], but with numerical simulation instead of a theoretical
approach, this result ilustrates a real surgical oncology procedure of large human
tumour.
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Figure 1. Tumoral dynamics: antineoplastic chemotherapy for
µ = 1.0 (thick solid line) – drug sensitive tumour, µ = 0.3 (thin
solid line) – drug “less sensitive” tumour and without any treat-
ment (dashed line). For µ = 1.0 (sensitive tumour) or µ = 0.3
there is no response at the first infusion of the drug at t = 0.
This occurs for both because if N1 ≈ k1 the treatment term
−µr1N1(1−N1/k1)Q ≈ 0 (see system (1)).

5. Conclusions. We proposed and analysed a mathematical model of ordinary
differential equations for cancer treatment, where the growth equation for the tu-
moral cell population is given by the logistic equation and the cell-kill response by
the Norton-Simon hypothesis. As we have declared, it is essential to understand
the relationship between cell-kill response and tumour growth dynamics, and the-
ferore a thorough understanding of tumoral pharmacodynamics is as important as
optimizing anticancer drug schedules.

From the analysis of equilibrium stability, we find the lower and upper bounds for
the amount of the drug administered in order to cure the disease via chemotherapy.
Above a certain upper dose, the chemotherapy is so strong that it eliminates even
normal cells. On the other hand, doses under a given lower bound cannot eliminate
the tumoral cells completely.

The coexistence of both tumour and normal cells, for a low carrying capacity of
tumour cells, is guaranted by a drug infusion lower than tumour cells’ absorption
of the drug. For a higher carrying capacity, coexistence occurs at a drug infusion
level lower than normal cells’ absorption of the drug. If the amount of the drug
administered is increased, one of the cells types (tumoral or normal) will prevail.

Numerical simulations for the sequencing of chemotherapy and surgery are pre-
sented, assuming drug administration in cycles. When surgery is performed after
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Figure 2. Tumoral dynamics: antineoplastic chemotherapy for
µ = 1.0 (thick solid line) – drug sensitive tumour, µ = 0.3 (thin
solid line) – drug “less sensitive” tumour and without any treat-
ment (dashed line). After the last infusion at t = 64, no treatment
is applied and then the tumour grows until reaching about 1012

cells.

chemotherapy, we observed a further increase in the survival time of the patient.
According to our results, large human tumours are less responsive than those of
intermediate (or small) size and therefore their clinical regression is probably best
explained by the Norton-Simon hypothesis.
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Appendix. Let us compare µc and µ<c (also νc and ν<c ), by defining, for µ > ν,

kc2 =
k1
α12

µ− ν
2ν

[√
1 +

4µνα12α21

(µ− ν)
2 − 1

]

= k1α21
2µ

µ− ν
1[√

1 + 4µνα12α21

(µ−ν)2 + 1
] (19)

1. For a low carrying capacity of normal cells, that is, if k2 < kc2, we have µc > µ<c
and νc < ν<c .

2. For a high carrying capacity of normal cells, that is, if k2 > kc2, we have
µc < µ<c and νc > ν<c .
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Figure 3. Tumoral dynamics: antineoplastic chemotherapy of a
tumour (µ = 0.3) with surgery at ts = 100 (dashed-dot line) and
without surgery (thin solid line).

For µ < ν, we define

kd2 =
k1
α12

ν − µ
2ν

[√
1 +

4µνα12α21

(ν − µ)
2 + 1

]

= k1α21
2µ

ν − µ
1[√

1 + 4µνα12α21

(ν−µ)2 − 1
] (20)

1. For a low carrying capacity of normal cells, that is, if k2 < kd2 then µc > µ<c
and νc < ν<c .

2. For a high carrying capacity of normal cells, that is, if k2 > kd2 then µc < µ<c
and νc > ν<c .

Summarizing the stability of P4 = (N1, N2, Q), for the case of µ > ν (biologically
relevant), we have:

1. Low carrying capacity of normal cells (decreased N1), k2 < kc2: We have
µc > µ<c and νc < ν<c . P4 is stable if Q < νc

ν . However, for νc < 0, P4 is
unstable.

2. High carrying capacity of normal cells (increased N1), k2 > kc2: We have
µc < µ<c and νc > ν<c . P4 is stable if Q < µc

µ . However, for µc < 0, P4 is

unstable.

For µ < ν (biologically irrelevant), the only change is kd2 , instead of kc2.
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