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Abstract: In this paper, the set-membership affine projection (SM-AP) algorithm is utilized to censor
non-informative data in big data applications. To this end, the probability distribution of the additive
noise signal and the excess of mean-squared error (EMSE) in steady-state are employed in order to
estimate the threshold parameter of the single threshold SM-AP (ST-SM-AP) algorithm aiming at
attaining the desired update rate. Furthermore, by defining an acceptable range for the error signal,
the double threshold SM-AP (DT-SM-AP) algorithm is proposed to detect very large errors due to the
irrelevant data such as outliers. The DT-SM-AP algorithm can censor non-informative and irrelevant
data in big data applications, and it can improve misalignment and convergence rate of the learning
process with high computational efficiency. The simulation and numerical results corroborate the
superiority of the proposed algorithms over traditional algorithms.

Keywords: adaptive filtering; set-membership filtering; affine projection; data censoring; big data;
outliers

1. Introduction

Data redundancy is a ubiquitous feature in machine learning and big data applications, and it results
in high computational load, energy consumption, processing time, and memory usage. By exploiting
data redundancy, we can improve the learning performance and reduce the computational cost. An
efficient approach to exploit data redundancy is through censoring non-informative data. Indeed, there
are many works in literature benefiting from data censoring, such as censoring outliers in radar data [1],
big data processing [2, 3], multi-sensor systems [4], sensor-centric data reduction [5], data censoring
for energy-efficient communications [6], wireless sensor networks [7], data selective adaptive filters
for sparse systems [8,9], just to name a few. These works illustrate the advantages of censoring data in
comparison with utilizing all data.

The set-membership filtering (SMF) is an efficient technique in dividing data into informative and
non-informative data set [10]. In the SMF approach, instead of processing all data in the learning
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process, we evaluate, select, then process data at each iteration. Indeed, the set-membership
algorithms execute a new update whenever the output estimation error is larger than a predetermined
value and incoming dataset contains enough innovation. Otherwise, the set-membership approach
prevents the algorithm from implementing new updates; thus we will have a reduction in the
computational burden. The most well known set-membership algorithms are the set-membership
normalized least-mean-square [11, 12] and the set-membership affine projection [13] algorithms,
where they have the benefits of the normalized least-mean-square and the affine projection algorithms,
respectively, but they decrease the computational complexity through exploiting data redundancy and
censoring data. Furthermore, there are many variants of the set-membership algorithms and their
applications in the literature [14–22].

The SMF is an efficient approach for censoring data in big data applications, whereas due to the very
large amount of data it would be more practical to determine beforehand the amount/percentage of data
we desire to use in the learning process. In real applications, many restrictions can affect our ability
to analyze the incoming data, such as limitations on available energy, time, memory, etc. Therefore,
to surmount the restrictions and obtain the desired performance, we should be able to determine the
informative incoming data. In this paper, we use the desired probability of updating of parameters
in order to estimate the threshold parameter in the single threshold set-membership affine projection
(ST-SM-AP) algorithm. Indeed, the function of the threshold parameter in the SM-AP algorithm is to
censor non-informative data, thus estimating this parameter is crucial to censor data properly.

The set-membership algorithms, including the ST-SM-AP, censor incoming data based on the
energy of the error signal. Indeed, if the energy of the error signal is larger than the threshold
parameter, the ST-SM-AP algorithm will update the coefficients of the adaptive filter; otherwise they
will remain unchanged. However, very high errors do not always show the presence of informative
data. More precisely, sometimes we observe very high error signal because of the existence of some
irrelevant data such as outliers and, in these cases, censoring data is more practical. Hence, we
propose the double threshold set-membership affine projection (DT-SM-AP) algorithm which
considers an acceptable range for the absolute value of the error signal to censor non-informative and
irrelevant data and to prevent unnecessary updates. The DT-SM-AP algorithm implements the update
whenever the absolute value of the error signal is between two threshold parameters [23]. Also, it
worth to mention that some data-selective adaptive filtering algorithms have already been proposed
in [21]; however, this work implemented an online threshold parameter computation; i.e., it updates
the threshold parameter at any iteration. In our method, the threshold parameter is defined offline; i.e.,
it is computed before running the algorithm to determine the percentage of data we want to utilize to
obtain the desired result.

This paper is organized as follows. Section 2 reviews the ST-SM-AP algorithm. Section 3 proposes
the estimate of the threshold parameter in order to censor non-informative incoming data. The DT-
SM-AP algorithm is introduced in Section 4. Simulations and conclusions are presented in Sections 5
and 6, respectively.

Notations: Scalars are denoted by lower case letters. Vectors (matrices) are represented by
lowercase (uppercase) boldface letters. At iteration k, the optimum solution, the weight vector, and
the input vector are denoted by wo, w(k), x(k) ∈ RN+1, respectively, where N is the adaptive filter
order. For a given iteration k, the error signal is defined as e(k) , d(k) − wT (k)x(k), where d(k) ∈ R is
the desired signal and (·)T stands for the vector and matrix transposition. Moreover, P[·] and E[·]
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denote the probability and the expected value operators, respectively.

2. The Single threshold set-membership affine projection algorithm

By taking advantage of old data, data-reusing algorithms can improve the convergence rate of the
learning process, particularly when the input signal is correlated. The affine projection (AP) algorithm
has been traditionally considered as the benchmark among data-reusing algorithms; however, the AP
algorithm is not capable of exploiting data redundancy. By incorporating the set-membership
technique to the AP algorithm, the single threshold set-membership affine projection (ST-SM-AP)
algorithm has already been introduced [13] in order to reduce the computational burden of the AP
algorithm. However, we intend to utilize the ST-SM-AP algorithm in order to censor data and exploit
data redundancy in big data applications. First, let us define some necessary variables for the
ST-SM-AP algorithm. Suppose that x(k) and d(k) are the input vector and the desired signal,
respectively, and the last L + 1 input vectors and desired signals are available. For a given iteration k,
suppose that the input matrix X(k), the input vector x(k), the adaptive filter w(k), the desired vector
d(k), the additive noise vector n(k), the constraint vector (CV) γ(k), and the error vector e(k) are
described as follows

X(k) = [ x(k) x(k − 1) · · · x(k − L) ] ∈ R(N+1)×(L+1),

x(k) = [ x(k) x(k − 1) · · · x(k − N) ]T ∈ RN+1,

w(k) = [ w0(k) w1(k) · · · wN(k) ]T ∈ RN+1,

d(k) = [ d(k) d(k − 1) · · · d(k − L) ]T ∈ RL+1,

n(k) = [ n(k) n(k − 1) · · · n(k − L) ]T ∈ RL+1,

γ(k) = [ γ0(k) γ1(k) · · · γL(k) ]T ∈ RL+1,

e(k) = [ e0(k) e1(k) · · · eL(k) ]T ∈ RL+1,

(2.1)

where N and L are the adaptive filter order and the data-reuse factor, respectively. The entries of γ(k)
should satisfy |γi(k)| ≤ γ1, for i = 0, 1, · · · , L, where γ1 ∈ R+ is the upper bound for the magnitude of
the error signal. Moreover, The error vector e(k) is defined as e(k) = d(k) − XT (k)w(k).

We can now represent the recursion rule of the ST-SM-AP algorithm by [13]

w(k + 1) =

 w(k) + X(k)
[
XT (k)X(k) + δI

]−1
(e(k) − γ(k)) if |e(k)| > γ1,

w(k) otherwise,
(2.2)

where δ ∈ R+ and I ∈ R(L+1)×(L+1) are a regularization factor and the identity matrix, respectively, and
δI is added to XT (k)X(k) in order to avoid numerical problems in the matrix inversion. In the following
section, we intend to introduce an approach to estimate γ1 such that it leads to the desired update rate
in big data applications.

3. Estimating γ1 in the ST-SM-AP algorithm

In this section, we obtain an estimate for γ1 in the ST-SM-AP algorithm for online censoring in
streaming big data applications. In the presence of data redundancy and streaming data, it is desirable
to obtain an acceptable solution by using a predetermined percentage of data instead of processing
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all received data. The percentage of data we want to use gives us the update rate of the ST-SM-AP
algorithm. Therefore, for a given predetermined update rate, we intend to estimate the threshold γ1

so that the update rate of the ST-SM-AP algorithm does not exceed the predetermined update rate. In
other words, for a given 0 < p < 1 and considering Equation (2.2), we intend to estimate γ1 such that

P[|e(k)| > γ1] = p. (3.1)

In the above equation, the predetermined update rate p represents the percentage of data we would like
to utilize in the learning process. Note that the responsibility of γ1 is to choose the most informative
data, by considering p, for the learning process.

If we know the probability distribution of the error signal e(k), then we can calculate the suitable
value of γ1. Generally, we do not have access to the probability distribution of the error signal.
However, using the central limit theorem [24], when the adaptive filter order is sufficiently large, the
error signal e(k) will have a zero-mean Gaussian distribution [22]. Therefore, by utilizing the
probability distribution of n(k) in (3.1), we will be able to calculate the proper value of γ1.

Note that the error signal e(k) is obtained by subtracting the output of the adaptive filter from the
desired signal, thus we have

e(k) = d(k) − xT (k)w(k) = xT (k)wo + n(k) − xT (k)w(k) = xT (k)[wo − w(k)]T + n(k) = ẽ(k) + n(k),
(3.2)

where ẽ(k) is the noiseless error signal. Furthermore, we know that the ST-SM-AP algorithm is
robust [25], thus ‖E[wo − w(k)]‖2 < ∞, for all k ∈ N. It means that the ST-SM-AP algorithm never
diverges. In general, we have E[wo − w(k)] ≈ 0 in the steady-state, where 0 stands for the zero vector.

A notable example for the probability distribution of the additive noise signal is the zero-mean
Gaussian noise with varianceσ2

n. Therefore, assuming this important case, we are capable of estimating
the threshold γ1. As we know, the noiseless error signal ẽ(k) is uncorrelated with the additive noise
signal n(k), thus using (3.2) we get

E[e(k)] = E[̃e(k)] + E[n(k)] = 0, (3.3)
Var[e(k)] = E[̃e2(k)] + σ2

n. (3.4)

The value of E[̃e2(k)] is called the excess of mean-squared error (EMSE), and for the ST-SM-AP
algorithm in the steady-state is described by [27]

E[̃e2(k)] =
(L + 1)[σ2

n + γ2
1 − 2γ1σ

2
nρ]p

[(2 − p) − 2(1 − p)γ1ρ]

( 1 − a
1 − aL+1

)
, (3.5)

where

ρ =

√
2

π(2σ2
n + 1

L+1γ
2
1)
, (3.6)

a = [1 − p + 2pγ1ρ](1 − p). (3.7)

As can be seen in Equation (3.5), in order to compute E[̃e2(k)] we need γ1, whereas our target is
to estimate γ1. Therefore, initially, in the steady-state, we consider that the value of E[̃e2(k)] is equal
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to zero and the distribution of e(k) is identical to the distribution of n(k). It means that, for the first
moment, E[e(k)] = 0, Var[e(k)] = σ2

n, and the distribution of e(k) is the zero-mean Gaussian with
variance σ2

n. Thus for a given p, using the relation (3.1), we can compute the initial estimate of γ1. In
other words, we have

P[|e(k)| > γ1] = P[e(k) < −γ1] + P[e(k) > γ1] = p, (3.8)

since the Gaussian distribution is symmetric, we get

P[e(k) > γ1] =
p
2
. (3.9)

Hence, we should compute γ1 by equation∫ ∞

γ1

1√
2πσ2

n

exp(−
r2

2σ2
n
)dr =

p
2
, (3.10)

where exp(·) stands for the exponential function. Thus, for a given update rate p, we can find the initial
estimate of γ1 using the standard normal distribution table.

Then, by having the initial estimate of γ1 at hand, we should replace it in Equations (3.5), (3.6),
and (3.7) to calculate E[̃e2(k)]. Ultimately, by having E[̃e2(k)], we will compute the variance of e(k)
utilizing Equation (3.4). Thus, the distribution of the error signal is the zero-mean Gaussian with
variance σ2

e = Var[e(k)] = E[̃e2(k)] + σ2
n and, by utilizing this distribution probability, we can attain a

better estimate for γ1. Indeed, the estimate of γ1 can be obtained from equation∫ ∞

γ1

1√
2πσ2

e

exp(−
r2

2σ2
e
)dr =

p
2
, (3.11)

where we can achieve the new estimate of γ1 by standard normal distribution table. we should remind
that the selected update rate p describes a loose relative importance of the innovation caused by the
new incoming input and desired data set.

4. The double threshold set-membership affine projection algorithm

In the previous section, a process to estimate the threshold parameter of the ST-SM-AP algorithm
has been addressed such that the update rate of the algorithm does not exceed a predetermined value
p. The ST-SM-AP algorithm avoids updating the adaptive filter parameters when the absolute value
of the error signal is less than γ1. Indeed, the ST-SM-AP algorithm assumes all incoming data set
with absolute value error larger than γ1 as innovative information; however, this is not always true,
particularly in the presence of outliers. In this section, we intend to introduce the double threshold
set-membership affine projection (DT-SM-AP) algorithm to censor non-informative data and exploit
data redundancy, also to avoid outliers effect, acquisition system saturation, and impulsive noise.

For a given iteration k, the ST-SM-AP algorithm update w(k) if |e(k)| > γ1, i.e., it updates w(k)
when |e(k)| is sufficiently large. However, there are iterations in which the error signal is very large,
and it does not contain new information. In fact, very large error signal might be happened due to
some irrelevant information at incoming data such as outliers, system saturation, and impulsive noise.
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Hence, when the absolute value of the error signal is very large, it would be more practical to avoid
new update in adaptive filter coefficients. To this end, we recommend to define an acceptable range
for the absolute value of the error signal and to adopt a lower threshold γ1 and an upper threshold γ2.
Then, at each iteration k, if the incoming data set results in an error e(k) such that γ1 < |e(k)| < γ2,
we implement a new updates since it means that the incoming data set brought about some innovation;
otherwise we avoid new update since the incoming data brought about non-innovative or irrelevant
information.

Finally, the update equation of the DT-SM-AP algorithm can be given by

w(k + 1) =

 w(k) + X(k)
[
XT (k)X(k) + δI

]−1
(e(k) − γ(k)) if γ1 < |e(k)| < γ2,

w(k) otherwise.
(4.1)

The task of γ1 is to ignore the incoming data set without enough innovation, thus we can utilize
the strategy described in the previous section in order to estimate γ1. However, γ2 is responsible for
detecting irrelevant incoming data set, such as outliers, thus depending on the applications we should
adopt a large enough value for γ2.

5. Simulations

In this section, we have applied the AP, the ST-SM-AP and DT-SM-AP algorithms to a system
identification problem. For the ST-SM-AP algorithm, the threshold parameter γ1 is estimated
employing the strategy explained in Section 3 in order to update the ST-SM-AP algorithm with the
desired update rate p. The unknown system wo has 10 coefficients, and they are drawn from the
normal distribution. We have tested the results for three different input signals, namely binary
phase-shift keying (BPSK), zero-mean white Gaussian noise with unit variance (WGN), and the
first-order autoregressive signal (AR(1)) produced by x(k) = 0.95x(k − 1) + m(k), where m(k) is a
WGN signal. The signal-to-noise ratio is 20 dB; i.e., the additive noise signal has variance σ2

n = 0.01.
The regularization parameter δ is set to be 10−12, and the initialization for the adaptive filter is adopted
as w(0) = [0 · · · 0]T . The constraint vector (CV) is selected as the simple choice CV [25, 26]. The
simple choice CV is defined as γ0(k) = γ1

e(k)
|e(k)| and γi(k) = ei(k) for i = 1, · · · , L. Moreover, the

step-size parameter for the AP algorithm is represented at the legend of each figure. The number of
iterations is 5 × 104, and the learning curves and the update rates are the averages of outcomes of 100
independent ensembles.

5.1. Scenario 1

In this scenario, we have utilized the estimated threshold parameter γ1 in the ST-SM-AP algorithm
in order to achieve the desired results by the given update rates p = 0.15, 0.30, and 0.45. The estimated
threshold parameters for L = 0, 1, 2, 3, 4 and p = 0.15, 0.30, 0.45 are obtained by using the argument
described in Section 3, and they are listed in Table 1. Furthermore, the update rates of the ST-SM-AP
algorithm using these threshold parameters and different input signals in 5×104 iterations are presented
in Table 2. As can be seen, by utilizing the estimated γ1s, for all input signals the resulting update rates
presented in Table 2 are close to the given values of p, such that in all cases the difference between
the amount of resulting update rate and the given value of p is less than 0.02 (2 percent). Therefore,
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by estimating γ1 for a given update rate p, we have suitably censored non-informative incoming data
such that, with high precision, we have controlled the amount of data we intend to use in the learning
process.

Table 1. The value of estimated γ1 for different values of p and L

p
L 0 1 2 3 4

0.15 0.1661 0.1692 0.1716 0.1736 0.1753
0.30 0.1199 0.1222 0.1244 0.1266 0.1292
0.45 0.0871 0.0900 0.0962 0.0998 0.1037

Table 2. The resulting update rates using the estimated γ1 for different values of p and L for
the ST-SM-AP algorithm with different input signals

Input signal p
L 0 1 2 3 4

BPSK
0.15 0.1339 0.1331 0.1337 0.1334 0.1332
0.30 0.2920 0.2909 0.2933 0.2935 0.2949
0.45 0.4407 0.4419 0.4441 0.4460 0.4474

WGN
0.15 0.1341 0.1329 0.1338 0.1332 0.1354
0.30 0.2982 0.2960 0.2967 0.2982 0.3003
0.45 0.4439 0.4452 0.4456 0.4474 0.4483

AR(1)
0.15 0.1451 0.1445 0.1463 0.1475 0.1484
0.30 0.3007 0.3016 0.3025 0.3034 0.3046
0.45 0.4513 0.4526 0.4522 0.4541 0.4557

Moreover, Figures 1(a), 1(b), and 1(c) depict the MSE learning curves of the AP and the ST-SM-
AP algorithms when the input signals are BPSK, WGN, and AR(1), respectively. Also, the data reuse
factor is chosen to be L = 2. In these figures, the desired update rate is p = 0.15, thus the estimated
γ1 is computed as 0.1716. For the AP algorithm, two different step-sizes 0.1 and 0.9 are adopted.
In Figures 1(a), 1(b), and 1(c), the update rates of the ST-SM-AP algorithm are 0.1337, 0.1338, and
0.1463, respectively, as presented in Table 2. On the one hand, we can observe that when the step-size
of the AP algorithm is large, the AP algorithm can reach the steady-state as fast as the ST-SM-AP
algorithm; however, the MSE of the ST-SM-AP algorithm is lower than that of the AP algorithm.
On the other hand, we can see that for small step-size the AP algorithm can attain the same MSE of
the ST-SM-AP algorithm; however, the convergence rate of the AP algorithm degrades significantly.
Therefore, the ST-SM-AP algorithm can reach low MSE with a high convergence rate as compared to
the AP algorithm. Furthermore, it is worth mentioning that the ST-SM-AP algorithm has extremely
lower computational complexity in comparison with the AP algorithm since it censors non-informative
incoming data and avoids unnecessary updates, whereas the AP algorithm updates the adaptive filter
coefficients at every iteration. Hence, the ST-SM-AP algorithm has the great potential to reduce the
computational burden in big data applications.
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Figure 1. The MSE learning curves of the AP and the ST-SM-AP algorithms for L = 2 and
γ1 = 0.1716 considering: (a) BPSK input signal; (b) WGN input signal; (c) AR(1) input
signal.

5.2. Scenario 2

In this scenario, we have implemented the AP, the ST-SM-AP, and the DT-SM-AP algorithms in
order to identify the unknown system wo when the desired signal contains an outliers signal. The
parameters of the mentioned algorithms are set identical to those of Scenario 1. The outliers signal is
added to the reference signal, and it is produced by a Bernoulli process, which takes 1 with probability
0.05, multiplying uniformly distributed random numbers belong to the interval (0, 50). For the DT-SM-
AP algorithm, we adopt γ2 = 1 in order to detect outliers and avoid updating adaptive filter coefficients
for irrelevant incoming data. By utilizing the threshold parameters γ1s presented in Table 1 and γ2 = 1,
the update rates of the DT-SM-AP algorithm for different data reuse factors L and different input signals
are given in Table 3. Similarly to Scenario 1, we can observe that in the presence of outliers signal, by
utilizing the estimated γ1s, for all input signals the resulting update rates are given in Table 3 are close
to the given value of p. Indeed, the DT-SM-AP algorithm detected outliers signal and non-informative
data effectively and avoided unnecessary updates when receiving insignificant and irrelevant incoming
data. It is worthwhile to notice that, in Table 3, the difference between the values of resulting update
rates and their corresponding values of p is less than 0.02 (2 percent); therefore, it shows that the
estimated γ1s and γ2 have censored the incoming data as we wanted.

Furthermore, Figures 2(a), 2(b), and 2(c) illustrate the misalignment curves of the AP, the ST-
SM-AP, and the DT-SM-AP algorithms for the BPSK, WGN, and AR(1) input signals, respectively.
For all mentioned algorithms, the data reuse factor L is selected to be 2. Also, the desired update
rate is p = 0.15, therefore, the estimated γ1 is adopted equal to 0.1716 as given in Table 1, and
γ2 = 1 in order to detect outliers and avoid unnecessary updates. Similarly to Scenario 1, we have
adopted two step-sizes 0.1 and 0.9 in the AP algorithm, so that the small step-size results in low MSE
and low convergence rate but the large step-size leads to high MSE and high convergence speed. In
Figures 2(a), 2(b), and 2(c), the update rates of the DT-SM-AP algorithm are 0.1348, 0.1349, and
0.1458, respectively, as described in Table 3; however, the update rates of the ST-SM-AP algorithm are
high values 0.8692, 0.8734, and 0.8985, respectively, because of unnecessary updates in the presence of
outliers. As can be seen in these figures, the AP algorithm using neither large nor small step-sizes can
reach the misalignment of the DT-SM-AP algorithm. Moreover, the misalignment and convergence
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speed of the ST-SM-AP algorithm are the same as those of the AP algorithm using the large step-
size 0.9. Therefore, in the presence of outliers, neither ST-SM-AP nor AP algorithms can attain the
superb performance of the DT-SM-AP algorithm. Indeed, in the presence of outliers, the DT-SM-AP
algorithm outperforms the ST-SM-AP and the AP algorithms by obtaining lower misalignment, lower
update rate, and higher convergence rate.

Table 3. The resulting update rates using the estimated γ1s and γ2 = 1 for different values of
p and L for the DT-SM-AP algorithm with different input signals

Input signal p
L 0 1 2 3 4

BPSK
0.15 0.1347 0.1342 0.1348 0.1341 0.1339
0.30 0.2943 0.2934 0.2941 0.2944 0.2951
0.45 0.4426 0.4435 0.4448 0.4473 0.4472

WGN
0.15 0.1352 0.1351 0.1349 0.1357 0.1363
0.30 0.2973 0.2966 0.2974 0.2989 0.2996
0.45 0.4448 0.4454 0.4469 0.4475 0.4487

AR(1)
0.15 0.1459 0.1452 0.1458 0.1471 0.1486
0.30 0.29992 0.3009 0.3015 0.3026 0.3034
0.45 0.4507 0.4518 0.4514 0.4529 0.4540
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Figure 2. The misalignment curves of the AP, the ST-SM-AP, and the DT-SM-AP algorithms
for L = 2, γ1 = 0.1716, and γ2 = 1 considering: (a) BPSK input signal; (b) WGN input
signal; (c) AR(1) input signal.

6. Conclusions

In this paper, the single threshold set-membership affine projection (ST-SM-AP) and the double
threshold set-membership affine projection (DT-SM-AP) algorithm have been proposed in order to
exploit data redundancy and censor non-informative and irrelevant data aiming at improving the
learning process. For this purpose, we have estimated the threshold parameter to attain the desired
update rate in the proposed algorithms. The estimate of the threshold parameter has been obtained
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with the help of the distribution probability function of the additive noise signal and the excess
mean-squared error in steady-state of the algorithm. The ST-SM-AP algorithm avoids updating the
adaptive filter coefficients when the absolute value of the output estimation error is smaller than the
estimated threshold. However, the two thresholds in the DT-SM-AP algorithm prevent the algorithm
from updating adaptive filter parameters when the absolute value of the error signal is outside the
range defined by the thresholds. The numerical results indicate that the ST-SM-AP and the
DT-SM-AP algorithms outperform the conventional affine projection algorithm.
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