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1. Introduction 

“Fixed Point Theory” studies, which are important in modern mathematics, date back to the early 

19th century [1]. Fixed point theory has found application in many branches of mathematics as well 

as in other branches of natural sciences, namely, general topology, functional analysis, mathematical 

analysis, differential equations, physics, chemistry, biology, engineering and statistics. Apart from this, 

medicine, communication, economics, and many other fields have benefited from “fixed point theory”. 

It has a wide application area in the past and today because it is used in solving many problems [2–4]. 

One of the areas where the fixed point approximation is most commonly used in mathematics is 
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integral equations. An equation in which the unknown function is under the integral sign is called an 

integral equation. Integral equations, both linear and nonlinear, occur in many areas of science and 

engineering [5,6]. Indeed, many physical processes and mathematical models can be described by them, 

thus providing an important tool for modeling processes, particularly fluid mechanics, solid state 

physics, kinetic chemistry, biological models, etc. Integral equations arise in fields. In this study, we 

will focus on some special integral equations that are widely applied, such as the Volterra integral 

equations. Frequent applications of such integral equations are seen in mathematical physics, 

engineering, and mathematics. For example, there are many problems with renewable and accumulator 

power systems, load balancing problem, and energy stores based on discontinuous core Volterra 

integral equations. We can also find more applications in the basic characteristics of storages such as 

capacity, efficiency, number of cycles and discharge/charge ratio, load distribution between existing 

storages based on electrical load estimation, production from renewable energy sources, and 

conventional generation [7–10]. 

The main purpose of fixed point theory is to determine the appropriate conditions to be added on 

the set 𝑋 or the mapping 𝑆 in order for the fixed points of the mapping 𝑆: 𝑋 → 𝑋 to be different 

from the null. Once the existence of a fixed point of a mapping has been shown, algorithms called 

iterations have been defined to find this point. 

However, the iteration method was first defined by the Italian mathematician Picard [11]. Until 

today, many iterations methods have been introduced and the properties of strong convergence, 

equivalence of convergence, data dependencies, and convergence rates of these iteration methods for 

certain classes of transformations have been examined in detail. These include Picard iteration, Mann 

iteration, Krasnosel'skii iteration, generalized Krasnosel'skii iteration, Kirk iteration, Ishikawa 

iteration, Noor iteration, multistep iteration, S iteration, two-step Mann iteration, SP iteration, CR 

iteration, S* iteration, Abbas and Nazir iteration, Thakur et al. iteration, three-step iteration, M iteration, 

M* iteration, and Picard’s three-step iteration method. In addition, many hybrid iteration methods have 

been defined based on these iteration methods. These include Kirk-Ishikawa, Kirk-Mann, Kirk-Noor, 

Kirk-SP, Kirk-CR, Picard-Mann, Multistep-SP, Kirk-Multistep, Kirk-S, and Picard-S [12–42]. Of 

course, there are two basic questions that researchers focus on when defining these iteration methods: 

(1) Question: Is it possible to define an iteration method that converges faster than the iteration 

methods introduced previously? 

(2) Question: Is it possible to define a more practical and simpler iteration method than the 

iteration methods introduced previously? 

Considering these questions, let's recall some studies that provide information about the 

equivalence and convergence fast between the iteration methods mentioned above. In the paper [25], 

a new three-step iterative method called CR iterative scheme was introduced for the class of quasi-

contraction operators. It is also shown that the CR iterative method is faster than the Picard, Mann, 

Ishikawa, Noor, and SP iterative. Karahan and Özdemir in [27] introduced the S* iteration method for 

non-expansive mappings in Banach spaces and proved that this method is faster than Picard, Mann, 

and S iterations. A new iteration method called Picard-S iteration method was defined for contractions 

by Gürsoy and Karakaya in [32], and it was numerically shown that it converges faster than Picard, 

Mann, Ishikawa, Noor, SP, S, and some other iteration methods. Inspired by the studies mentioned 

above, Ali et al. described Picard's three-step iteration method for the approximation of fixed points of 

Zamfirescu operators in an arbitrary Banach space [40]. Moreover, they proved that Picard's three-step 

iteration process converges faster than all iteration methods such as Picard, Mann, Ishikawa, Noor, 
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Picard-S, SP, S, CR, and M*. Apart from the studies mentioned here, there are studies on the 

convergence speed of many iteration methods in the literature. Interested researchers can look at the 

sources mentioned above and the references in these sources. 

In the second part, the basic concepts that will be used in the study are stated. In the third part, 

the convergence and data dependence of nonlinear Volterra integral equations are investigated with the 

Picard’s three-step iteration algorithm defined by Ali et al. Finally, examples are given to explain the 

result obtained. 

2. Materials and methods 

In this section, let's express some basic concepts that will be used in the next section. 

Definition 2.1. Let (𝑋, 𝑑) be a metric space and 𝑆: 𝑋 → 𝑋 a mapping. If for all 𝑥, 𝑦 ∈ 𝑋 there exists a 

number 𝛿 > 0 such that 𝑑(𝑆𝑥, 𝑆𝑦) ≤ 𝛿𝑑(𝑥, 𝑦), then 𝑆 is called a Lipschitzian mapping. If 𝛿 ∈ (0,1), 

then 𝑆 is called a contraction mapping [2]. 

Also, if 𝑆: 𝑋 → 𝑋 is a Lipschitzian mapping defined on the normed space 𝑋, and for all 𝑥, 𝑦 ∈

𝑋  there exists real number 𝛿 ∈ (0,1)  such that ‖𝑆𝑥 − 𝑆𝑦‖ ≤ 𝛿‖𝑥 − 𝑦‖ , then 𝑆  is called a 

contraction mapping [38]. 

Now, let's state the Banach fixed point theorem, which is the most fundamental theorem of fixed 

point theory [1]. 

Theorem 2.2. Let 𝑆 ∶ 𝑋 → 𝑋 be a contraction mapping on a complete metric space (𝑋, 𝑑). Then the 

following holds: 

i) 𝑆 mapping has only one fixed point 𝑥 ∈ 𝑋. 

ii) Iteration sequence {𝑆𝑛𝑥0} for any 𝑥0 ∈ 𝑋 converges to the unique fixed point of 𝑆. 

Definition 2.3. Let 𝑆: 𝑋 → 𝑋  be a mapping defined on the metric space (𝑋, 𝑑) . The fixed point 

iteration method is the most elementary form for ∀𝑛 ∈ ℕ and 𝑥0 ∈ 𝑋, where 𝑓 is a function defined 

by the relation [2] 

𝑥𝑛+1 = 𝑓(𝑆, 𝑥𝑛).         (2.1) 

The reason why we used Picard's three-step iteration algorithm in our study is that this algorithm 

was proven by Ali et al. in 2021 to be faster than many iteration algorithms such as Picard, Mann, 

Ishikawa, Noor, Picard-S, SP, S, CR, and M*. Now, let's express the definition of this algorithm. 

Definition 2.4. Let 𝑋 be a metric space or a Banach space, and let 𝑆: 𝑋 → 𝑋 be a defined mapping. 

The iteration method (𝑥𝑛) given by the estimated starting point 𝑥0 ∈ 𝑋 and for 𝑛 ∈ ℤ+ 

{
𝑥𝑛+1 = 𝑓(𝑆, 𝑥𝑛) = 𝑆𝑦𝑛,
    𝑦𝑛 = 𝑆𝑧𝑛,
    𝑧𝑛 = 𝑆𝑥𝑛,

         (2.2) 

is called the Picard's three-step iteration [40]. 

Definition 2.5. The integral equations in the form of 

𝜑(𝑥) = 𝑓(𝑥) + 𝛼 ∫
𝑥

𝑎
𝐾(𝑥, 𝑡, 𝜑(𝑡))𝑑𝑡,      (2.3) 

where 𝐾(𝑥, 𝑡, 𝜑)  is a known function defined over the region 𝐷 = {(𝑥, 𝑡, 𝜑) ∈ ℝ3 ∶ 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏,

−∞ < 𝜑 < ∞} and 𝜑(𝑡) is an unknown function whose solution is sought, and 𝛼 is any numerical 
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parameter, are called the second type of nonlinear Volterra integral equations. Here, 𝐾 is called the 

kernel of the integral equation [5]. 

Thus, in [6] thet obtained the existence and uniqueness of the solution (2.3) by using the 

contraction principle under the following conditions. 

Theorem 2.6. Let the nonlinear Volterra integral Eq (2.3) be given such that 𝜑(𝑥) is  an unknown 

function, the function 𝐾(𝑥, 𝑡, 𝜑)  is a continuous function on 𝐷 = {(𝑥, 𝑡, 𝜑) ∈ ℝ3 ∶  0 ≤ 𝑥, 𝑡 ≤ 𝑇,

−∞ < 𝜑 < ∞} , and the function 𝑓(𝑥)  is a continuous function on [0, 𝑇].  Suppose all of the 

following conditions are satisfied. 

i) There exists a nonnegative and continuous function 𝜃(𝑥, 𝑡) in [0, 𝑇]2 such that 

|𝐾(𝑥, 𝑡, 𝜑) − 𝐾(𝑥, 𝑡, 𝜓)| ≤ 𝜃(𝑥, 𝑡)|𝜑 − 𝜓| , 

for ∀(𝑥, 𝑡) ∈ [0, 𝑇]2 and ∀𝜑, 𝜓 ∈ (−∞,∞). 

ii) When 𝜃(𝑥, 𝑡) = 𝐿 > 0 is 𝐿 ≤ 𝐿1 , 𝜌 is defined as 

𝜌 = max {𝑒−𝐿1𝑥∫𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡

𝑥

0

: 𝑥 ∈ [0, 𝑇]} . 

Let 𝜌 < 1. Then, the integral equation given by (2.3) has a solution and it is unique. 

Definition 2.7. Let's define the operator 𝑆: 𝐶[0, 𝑇] → 𝐶[0, 𝑇] for 𝜑(𝑥) ∈ 𝐶[0, 𝑇] as 

𝑆(𝜑(𝑥)) =   𝑓(𝑥) + 𝛼 ∫
𝑥

0
𝐾(𝑥, 𝑡, 𝜑(𝑡))𝑑𝑡,      (2.4) 

and the norm of the function 𝜑(𝑥) ∈ 𝐶[0, 𝑇] as [6] 

‖𝜑‖∗ = max{𝑒
−𝐿1𝑥|𝜑(𝑥)| ∶  𝑥 ∈ [0, 𝑇]}. 

Definition 2.8. Let 𝐴, 𝑆 ∶ 𝑋 → 𝑋 be operators. If ‖𝐴𝑥 − 𝑆𝑥‖ ≤ 휀 for all 𝑥 ∈ 𝑋 and constant 휀 > 0, 

then 𝑆 is called the approximation operator of 𝐴 [21]. 

We end this section with two important lemmas that we will use to prove our main results. 

Lemma 2.9. Let {𝛼𝑛}𝑛=0
∞  and {𝛽𝑛}𝑛=0

∞  be two nonnegative real sequences. If 𝜇𝑛 ∈ (0,1) for each 

𝑛 ≥ 𝑛0, ∑
∞
𝑛=0 𝜇𝑛 = ∞, and 

𝛽𝑛

𝜇𝑛
→ 0 as 𝑛 → ∞, satisfying conditions such that 𝛼𝑛+1 ≤ (1 − 𝜇𝑛)𝛼𝑛 +

𝛽𝑛 , then lim𝑛→∞𝛼𝑛 = 0 [17]. 

Lemma 2.10. Let {𝛼𝑛}𝑛=0
∞   be a nonnegative real sequence. There exist for each 𝑛 ≥ 𝑛0, 𝑛0 ∈ ℕ,

𝜇𝑛 ∈ (0,1), ∑
∞
𝑛=0 𝜇𝑛 = ∞, and 𝜉𝑛 ≥ 0 satisfying conditions such that 𝛼𝑛+1 ≤ (1 − 𝜇𝑛)𝛼𝑛 + 𝜇𝑛𝜉𝑛 , 

then the following inequality holds: 0 ≤ lim
𝑛→∞

sup𝛼𝑛 ≤ lim
𝑛→∞

sup𝜉𝑛 [21]. 

3. Results 

In this section, we show that the convergence result can be obtained for Eq (2.3) under suitable 

conditions, and we also examine the data dependence result through the iterative algorithm (2.2). For 

this, let the following iteration algorithm of convergence and data dependence of nonlinear Volterra 

integral equations be defined. Reconstruct iteration (2.2) using 𝑆 ∶ 𝐶[0, 𝑇] → 𝐶[0, 𝑇], 𝑆(𝜑(𝑥)) =
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  𝑓(𝑥) + 𝛼 ∫
𝑥

0
𝐾(𝑥, 𝑡, 𝜑(𝑡))𝑑𝑡 as follows: 

{
 

 𝜑𝑛+1
(𝑥) = 𝑓(𝑥) + 𝛼 ∫ 𝐾(𝑥, 𝑡, 𝜓𝑛(𝑡))𝑑𝑡,

𝑥

0

𝜓𝑛(𝑥) = 𝑓(𝑥) + 𝛼 ∫ 𝐾(𝑥, 𝑡, 𝜏𝑛(𝑡))𝑑𝑡
𝑥

0
,

𝜏𝑛(𝑥) = 𝑓(𝑥) + 𝛼 ∫ 𝐾(𝑥, 𝑡, 𝜑𝑛(𝑡))𝑑𝑡
𝑥

0
.

     (3.1) 

Our first theorem proves that the sequence {𝜑𝑛}𝑛=0
∞   obtained from the (2.2) iteration algorithm 

strongly converges to the fixed point of (2.4). 

Theorem 3.1. Let 𝑆: (𝐶[0, 𝑇], ‖⋅‖∗)  → (𝐶[0, 𝑇], ‖⋅‖∗)  be an operator.  So, the integral equation 

given by (2.4) has a unique solution 𝑝 ∈ 𝐶([0, 𝑇]). Also, let 𝜌 be defined as follows: 

𝜌 = max {𝑒−𝐿1𝑥∫𝜃(𝑥, 𝑡) 𝑒𝐿1𝑡𝑑𝑡

𝑥

0

}. 

If |𝛼|𝜌 < 1, then the sequence {𝜑𝑛}𝑛=0
∞  converges to 𝑝. 

Proof: Let {𝜑𝑛}𝑛=0
∞

 be an iterative sequence generated by iteration algorithm (3.1) for the operator 

𝑆: (𝐶[0, 𝑇], ‖⋅‖∗) → (𝐶[0, 𝑇], ‖⋅‖∗),   𝑆(𝜑(𝑥)) = 𝑓(𝑥) + 𝛼 ∫
𝑥

0
𝐾(𝑥, 𝑡, 𝜑(𝑡))𝑑𝑡 . It will be shown that 

𝜑𝑛 → 𝑝 as 𝑛 → ∞. If the necessary calculations are made using algorithm (3.1) and the conditions 

of Theorem 2.6, 

|𝜑𝑛+1(𝑥) − 𝑝(𝑥)| = |𝑆𝜓𝑛(𝑥) − 𝑆𝑝(𝑥)| 

= |𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝜓𝑛(𝑡))𝑑𝑡
𝑥

0

− (𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝑝(𝑡))𝑑𝑡
𝑥

0

)| 

= |𝛼| |∫𝐾(𝑥, 𝑡, 𝜓𝑛(𝑡))𝑑𝑡 − ∫𝐾(𝑥, 𝑡, 𝑝(𝑡))𝑑𝑡

𝑥

0

𝑥

0

| 

≤ |𝛼|∫|𝐾(𝑥, 𝑡, 𝜓𝑛(𝑡)) − 𝐾(𝑥, 𝑡, 𝑝(𝑡))|

𝑥

0

𝑑𝑡 

≤ |𝛼|∫𝜃(𝑥, 𝑡)|𝜓𝑛(𝑡) − 𝑝(𝑡)|𝑑𝑡

𝑥

0

 

≤ |𝛼|‖𝜓𝑛 − 𝑝‖∗ ∫ 𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡
𝑥

0
, 

and |𝜑𝑛+1(𝑥) − 𝑝(𝑥)| ≤ |𝛼|‖𝜓𝑛 − 𝑝‖∗ ∫ 𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡
𝑥

0
 . 

If both sides of this last inequality are multiplied by 𝑒−𝐿1𝑥 and the maximums are taken, 

𝑒−𝐿1𝑥|𝜑𝑛+1(𝑥) − 𝑝(𝑥)| ≤ |𝛼|‖𝜓𝑛 − 𝑝‖∗𝑒
−𝐿1𝑥 ∫ 𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡

𝑥

0
, 
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max{𝑒−𝐿1𝑥|𝜑𝑛+1(𝑥) − 𝑝(𝑥)|} ≤ |𝛼|‖𝜓𝑛 − 𝑝‖∗max{𝑒
−𝐿1𝑥 ∫ 𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡

𝑥

0
}, 

‖𝜑𝑛+1 − 𝑝‖∗ ≤ |𝛼|‖𝜓𝑛 − 𝑝‖∗max {𝑒
−𝐿1𝑥∫𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡

𝑥

0

} 

is obtained. Hence, if 𝜃(𝑥, 𝑡) = 𝐿 > 0 and 𝐿 ≤ 𝐿1 , 𝜌 =
𝐿(1−𝑒−𝐿1𝑇)

𝐿1
  so that 

‖𝜑𝑛+1 − 𝑝‖∗ ≤ |𝛼|𝜌‖𝜓𝑛 − 𝑝‖∗       (3.2) 

is found. Similarly, 

|𝜓𝑛(𝑥) − 𝑝(𝑥)| = |𝑆𝜏𝑛(𝑥) − 𝑆𝑝(𝑥)| 

                                     = |𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝜏𝑛(𝑡))𝑑𝑡
𝑥

0

− 𝐴𝑝(𝑥) − (𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝑝(𝑡))𝑑𝑡
𝑥

0

)| 

                           ≤ |𝛼|∫ |𝐾(𝑥, 𝑡, 𝜏𝑛(𝑡)) − 𝐾(𝑥, 𝑡, 𝑝(𝑡))|
𝑥

0

𝑑𝑡 

                           ≤ |𝛼|∫𝜃(𝑥, 𝑡)|𝜏𝑛(𝑡) − 𝑝(𝑡)|𝑑𝑡

𝑥

0

 

                                        ≤ |𝛼|‖𝜏𝑛 − 𝑝‖∗∫𝜃(𝑥, 𝑡)𝑒
𝐿1𝑡𝑑𝑡

𝑥

0

.  

If both sides of this last inequality are multiplied by 𝑒−𝐿1𝑥and the maximums are taken, 

‖𝜓𝑛 − 𝑝‖∗ ≤ |𝛼|𝜌‖𝜏𝑛 − 𝑝‖∗       (3.3) 

is found. 

|𝜏𝑛(𝑥) − 𝑝(𝑥)| = |𝑆𝜑𝑛(𝑥) − 𝑆𝑝(𝑥)| 

                                       =  |𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝜑𝑛(𝑡))𝑑𝑡
𝑥

0

− (𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝑝(𝑡))𝑑𝑡
𝑥

0

)| 

                                      = |𝛼| |∫ 𝐾(𝑥, 𝑡, 𝜑𝑛(𝑡)) − 𝐾(𝑥, 𝑡, 𝑝(𝑡))𝑑𝑡
𝑥

0

| 

                                       ≤ |𝛼|∫|𝐾(𝑥, 𝑡, 𝜑𝑛(𝑡)) − 𝐾(𝑥, 𝑡, 𝑝(𝑡))|𝑑𝑡

𝑥

0
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                                       ≤ |𝛼|∫𝜃(𝑥, 𝑡)|𝜑𝑛(𝑡) − 𝑝(𝑡)|𝑑𝑡

𝑥

0

 

                                       ≤ |𝛼|‖𝜑𝑛 − 𝑝‖∗∫𝜃(𝑥, 𝑡)𝑒
𝐿1𝑡𝑑𝑡

𝑥

0

 

and |𝜏𝑛(𝑥) − 𝑝(𝑥)| ≤ |𝛼|‖𝜑𝑛 − 𝑝‖∗ ∫ 𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡
𝑥

0
. 

If both sides of this last inequality are multiplied by 𝑒−𝐿1𝑥 and the maximums are taken, 

max{𝑒−𝐿1𝑥|𝜏𝑛(𝑥) − 𝑝(𝑥)|} ≤ |𝛼|‖𝜑𝑛 − 𝑝‖∗max{𝑒
−𝐿1𝑥 ∫ 𝜃(𝑥, 𝑡)𝑒𝐿1𝑡𝑑𝑡

𝑥

0
}, 

‖𝜏𝑛 − 𝑝‖∗ ≤ |𝛼|𝜌‖𝜑𝑛 − 𝑝‖∗        (3.4) 

is found. If inequality (3.4) is used in inequality (3.3), 

‖𝜓𝑛 − 𝑝‖∗ ≤ (|𝛼|𝜌)2‖𝜑𝑛 − 𝑝‖∗       (3.5) 

is found. If inequality (3.5) is used in inequality (3.2), ‖𝜑𝑛+1 − 𝑝‖∗ ≤ (|𝛼|𝜌)3‖𝜑𝑛 − 𝑝‖∗ is obtained. 

If induction is applied to the last inequality, inequality (3.6) is easily seen. 

‖𝜑𝑛+1 − 𝑝‖∗ ≤ (|𝛼|𝜌)3‖𝜑𝑛 − 𝑝‖∗ 

                                ≤ (|𝛼|𝜌)6‖𝜑𝑛−1 − 𝑝‖∗  

  ⋮ 

‖𝜑𝑛+1 − 𝑝‖∗ ≤ (|𝛼|𝜌)
3(𝑛+1)‖𝜑0 − 𝑝‖∗      (3.6) 

Thus, if the limit is taken when 𝑛 → ∞ in inequality (3.6), since |𝛼|𝜌 < 1, lim
𝑛→∞

‖𝜑𝑛+1 − 𝑝‖∗ = 0 is 

obtained. This completes the proof. 

This result leads to the next theorem. Now, we prove the result on data dependence for the Picard's 

three-step iteration algorithm. Thus, consider the integral equation 

𝑢(𝑥) = 𝑔(𝑥) + 𝛼1 ∫  𝐻(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡,
𝑥

0
       (3.7) 

where 𝑔(𝑥) is a continuous function in [0, 𝑇], 𝑢(𝑥) is a function whose solution is desired in [0, 𝑇], 

𝐻(𝑥, 𝑡, 𝑢(𝑡))  is a function given continuously on the domain 𝐷 = {(𝑥, 𝑡, 𝑢) ∈ ℝ3 ∶  0 ≤ 𝑥, 𝑡 ≤ 𝑇,

−∞ < 𝑢 < ∞}, and 𝛼1 is a parameter. (3.8) operators can be written from (3.7) integral equations. 

𝐴: (𝐶[0, 𝑇], ‖⋅‖∗) → (𝐶[0, 𝑇], ‖⋅‖∗) , 

𝐴(𝑢(𝑥)) = 𝑔(𝑥) + 𝛼1 ∫  𝐻(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡.
𝑥

0
      (3.8) 

Thus, recreate the iteration algorithm given in (2.2) with the operator (3.8). 
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{
 

 𝑢𝑛+1
(𝑥) = 𝑔(𝑥) + 𝛼1 ∫ 𝐻(𝑥, 𝑡, 𝑢𝑛(𝑡))𝑑𝑡,

𝑥

0

𝑣𝑛(𝑥) = 𝑔(𝑥) + 𝛼1 ∫ 𝐻(𝑥, 𝑡, 𝑤𝑛(𝑡))𝑑𝑡
𝑥

0
,

𝑤𝑛(𝑥) = 𝑔(𝑥) + 𝛼1 ∫ 𝐻(𝑥, 𝑡, 𝑢𝑛(𝑡))𝑑𝑡
𝑥

0
.

     (3.9) 

In the following theorem, data dependency is revealed by using (3.1) and (3.9) iteration algorithms for 

nonlinear Volterra integral equations. This result obtained immediately afterward is supported by an 

example. 

Theorem 3.2. Let the sequence obtained from Eq (3.1) and the sequence obtained from Eq (3.9) 

be {𝜑𝑛}𝑛=0
∞  and {𝑢𝑛}𝑛=0

∞ , respectively. Under the conditions of Theorem 3.1, let the solution of (2.4) 

integral equations be 𝑝 and the solution of (3.8) integral equations be 𝑞. Also, suppose the following 

conditions are met 

i) There exists a nonnegative and continuous function 𝛾(𝑥, 𝑡)  in [0, 𝑇]2 . Let there exist a 

positive number 𝑁1 such that 𝛾(𝑥, 𝑡) = 𝑁 > 0 and 𝑁 ≤ 𝑁1. Thus, for ∀(𝑥, 𝑡) ∈ [0, 𝑇], 

|𝐾(𝑥, 𝑡, 𝜇) − 𝐻(𝑥, 𝑡, 𝜔)| ≤ 𝛾(𝑥, 𝑡)|𝜇 − 𝜔|. 

ii) 𝑀 = max{𝑒−𝑁1𝑥 ∫ 𝛾(𝑥, 𝑡) 𝑒𝑁1𝑡𝑑𝑡
𝑥

0
}  and 휀1 = max{𝑒−𝑁1𝑥|𝑓(𝑥) − 𝑔(𝑥)|}. 

iii) Let 𝛼0 = max{|𝛼|, |𝛼1|} for ∀𝑛 ∈ ℕ and a constant 휀2 such that 0 < 𝛼0𝑀 < 휀2 < 1. 

In this case, if 𝜑𝑛 → 𝑝 and 𝑢𝑛 → 𝑞 as 𝑛 → ∞, the ‖𝑝 − 𝑞‖∗ ≤ 
3𝜀1

1−𝜀2
  inequality holds. 

Proof. If the necessary calculations are made by considering the hypotheses of Theorem 3.2, the 

following inequalities are obtained. 

|𝜑𝑛+1(𝑥) − 𝑢𝑛+1(𝑥)| = |𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, t, 𝜓𝑛(𝑡))𝑑𝑡
𝑥

0

− (𝑔(𝑥) + 𝛼1∫ 𝐻(𝑥, 𝑡, 𝑣𝑛(𝑡))𝑑𝑡
𝑥

0

)| 

  ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0∫ (𝐾(𝑥, 𝑡, 𝜓𝑛(𝑡)) − 𝐻(𝑥, 𝑡, 𝑣𝑛(𝑡)))
𝑥

0

𝑑𝑡| 

 = |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0| |∫  (𝐾(𝑥, 𝑡, 𝜓𝑛(𝑡)) − 𝐻(𝑥, 𝑡, 𝑣𝑛(𝑡))) 𝑑𝑡
𝑥

0
| 

 ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|∫  |𝐾(𝑥, 𝑡, 𝜓𝑛(𝑡)) − 𝐻(𝑥, 𝑡, 𝑣𝑛(𝑡))|𝑑𝑡
𝑥

0

 

≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|∫ 𝛾(𝑥, 𝑡)|𝜓𝑛(𝑡) − 𝑣𝑛(𝑡)|

𝑥

0

𝑑𝑡 

= |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|∫ 𝛾(𝑥, 𝑡)|𝜓𝑛(𝑡) − 𝑣𝑛(𝑡)| 𝑒
−𝑁1𝑡𝑒𝑁1𝑡

𝑥

0

𝑑𝑡 
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|𝜑𝑛+1(𝑥) − 𝑢𝑛+1(𝑥)| ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|‖𝜓𝑛 − 𝑣𝑛‖∗∫𝛾(𝑥, 𝑡)𝑒
𝑁1𝑡

𝑥

0

𝑑𝑡. 

If both sides of this last inequality are multiplied by 𝑒−𝑁1𝑥 , then the maximums are taken, 

max{𝑒−𝑁1𝑥|𝜑𝑛+1(𝑥) − 𝑢𝑛+1(𝑥)|} ≤ max{𝑒−𝑁1𝑥|𝑓(𝑥) − 𝑔(𝑥)|} 

          +max{|𝛼0|‖𝜓𝑛 − 𝑣𝑛‖∗𝑒
−𝑁1𝑥 ∫ 𝛾(𝑥, 𝑡)𝑒𝑁1𝑡

𝑥

0
𝑑𝑡}, 

‖𝜑𝑛+1 − 𝑢𝑛+1‖∗ ≤ 휀1 + |𝛼0|𝑀‖𝜓𝑛 − 𝑣𝑛‖∗     (3.10) 

is obtained. Similarly, 

|𝜓𝑛(𝑥) − 𝑣𝑛(𝑥)| ≤ |𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝜏𝑛(𝑡))𝑑𝑡
𝑥

0

− (𝑔(𝑥) + 𝛼1∫ 𝐻(𝑥, 𝑡, 𝑤𝑛(𝑡))𝑑𝑡
𝑥

0

)| 

 ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0| |∫ (𝐾(𝑥, 𝑡, 𝜏𝑛(𝑡)) − 𝐻(𝑥, 𝑡, 𝑤𝑛(𝑡)))
𝑥

0

𝑑𝑡| 

 ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|‖𝜏𝑛 − 𝑤𝑛‖∗∫ 𝛾(𝑥, 𝑡)𝑒𝑁1𝑡 𝑑𝑡
𝑥

0

. 

If both sides of this last inequality are multiplied by 𝑒−𝑁1𝑥, then the maximums are taken, 

max{ 𝑒−𝑁1𝑥|𝜓𝑛(𝑥) − 𝑣𝑛(𝑥)|} ≤ max{𝑒−𝑁1𝑥|𝑓(𝑥) − 𝑔(𝑥)|} 

                                                       +|𝛼0|‖𝜏𝑛 − 𝑤𝑛‖∗ max{𝑒
−𝑁1𝑥 ∫ 𝛾(𝑥, 𝑡) 𝑒𝑁1𝑡𝑑𝑡

𝑥

0
}, 

‖𝜓𝑛 − 𝑣𝑛‖∗ ≤ 휀1 + |𝛼0|𝑀‖𝜏𝑛 − 𝑤𝑛‖∗      (3.11) 

is obtained. 

|𝜏𝑛(𝑥) − 𝑤𝑛(𝑥)| = |𝑓(𝑥) + 𝛼∫ 𝐾(𝑥, 𝑡, 𝜑𝑛(𝑡))𝑑𝑡
𝑥

0

− (𝑔(𝑥) + 𝛼1∫ 𝐻(𝑥, 𝑡, 𝑢𝑛(𝑡))𝑑𝑡
𝑥

0

)| 

≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0| |∫ 𝐾(𝑥, 𝑡, 𝜑𝑛(𝑡)) − 𝐻(𝑥, 𝑡, 𝑢𝑛(𝑡))𝑑𝑡
𝑥

0

| 

 ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|∫ |𝐾(𝑥, 𝑡, 𝜑𝑛(𝑡)) − 𝐻(𝑥, 𝑡, 𝑢𝑛(𝑡))|𝑑𝑡
𝑥

0

 

≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|∫ 𝛾(𝑥, 𝑡)|𝜑𝑛(𝑡) − 𝑢𝑛(𝑡)|𝑑𝑡

𝑥

0

 

    ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝛼0|‖𝜑𝑛 − 𝑢𝑛‖∗ ∫ 𝛾(𝑥, 𝑡)𝑒𝑁1𝑡𝑑𝑡
𝑥

0
.  
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If both sides of this last inequality are multiplied by 𝑒−𝑁1𝑥 , then the maximums are taken, 

𝑒−𝑁1𝑥max{|𝜏𝑛(𝑥) − 𝑤𝑛(𝑥)|} ≤ max{𝑒
−𝑁1𝑥|𝑓(𝑥) − 𝑔(𝑥)|} 

                                                         +|𝛼0|‖𝜑𝑛 − 𝑢𝑛‖∗max{𝑒
−𝑁1𝑥 ∫ 𝛾(𝑥, 𝑡)𝑒𝑁1𝑡𝑑𝑡

𝑥

0
}, 

‖𝜏𝑛 − 𝑤𝑛‖∗ ≤ 휀1 + |𝛼0|𝑀‖𝜑𝑛 − 𝑢𝑛‖∗       (3.12) 

is obtained. Using the following hypotheses and combining (3.11) and (3.12), we obtain 

• 𝛼0 = max{|𝛼|, |𝛼1|}. 

• 0 < 𝛼0𝑀 < 휀2 < 1. 

‖𝜓𝑛 − 𝑣𝑛‖∗ ≤ 휀1 + |𝛼0|𝑀(휀1 + |𝛼0|𝑀‖𝜑𝑛 − 𝑢𝑛‖∗) 

                       = 휀1 + 휀1|𝛼0|𝑀 + |𝛼0|𝑀|𝛼0|𝑀‖𝜑𝑛 − 𝑢𝑛‖∗ 

                    ≤ 2휀1 + |𝛼0|𝑀‖𝜑𝑛 − 𝑢𝑛‖∗ .           (3.13) 

If inequality (3.13) is written in inequality (3.10), 

‖𝜑𝑛+1 − 𝑢𝑛+1‖∗ ≤ 휀1 + |𝛼0|𝑀(2휀1 + |𝛼0|𝑀‖𝜑𝑛 − 𝑢𝑛‖∗)                      

= 휀1 + 2휀1|𝛼0|𝑀 + |𝛼0|𝑀|𝛼0|𝑀‖𝜑𝑛 − 𝑢𝑛‖∗              

≤ 3휀1 + |𝛼0|𝑀‖𝜑𝑛 − 𝑢𝑛‖∗                                               

= (1 − (1 − |𝛼0|𝑀))‖𝜑𝑛 − 𝑢𝑛‖∗ + 3휀1                        

       = (1 − (1 − |𝛼0|𝑀))‖𝜑𝑛 − 𝑢𝑛‖∗ + (1 − |𝛼0|𝑀)
3휀1

1 − |𝛼0|𝑀
  

                                     ≤ (1 − (1 − |𝛼0|𝑀))‖𝜑𝑛 − 𝑢𝑛‖∗ + (1 − |𝛼0|𝑀)
3𝜀1

1−𝜀2
    (3.14) 

is found. Considering the inequality (3.14), we get 𝛼𝑛 = ‖𝜑𝑛 − 𝑢𝑛‖∗ , 𝜇𝑛 = (1 − |𝛼0|𝑀) ∈ (0,1), 

and 𝜉𝑛 =
3𝜀1

1−𝜀2
≥ 0 . Since the inequality (3.14) satisfies the conditions of Lemma 2.10, we found 

0 ≤ limsup‖𝜑𝑛 − 𝑢𝑛‖∞ 

              ≤ limsup {
3휀1
1 − 휀2

} 

              =
3휀1
1 − 휀2

 

and 0 ≤ limsup
𝑛→∞

‖𝜑𝑛 − 𝑢𝑛‖∗ ≤ limsup
𝑛→∞

𝜉𝑛 = limsup
𝑛→∞

3𝜀1

1−𝜀2
 .  Since 𝜑𝑛 → 𝑝  and 𝑢𝑛 → 𝑞  when 𝑛 → ∞ ,  

‖𝑝 − 𝑞‖∗ ≤
3휀1
1 − 휀2
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is found. 

Now, let's give one for both linear and nonlinear Volterra integral equations. 

Example 3.3. Let's take the following integral defined over region 𝐷 = {(𝑥, 𝑡, 𝜑) ∈ ℝ3 ∶  0 ≤ 𝑥, 𝑡 ≤

1, −∞ < 𝜑 < ∞}, 

𝜑(𝑥) =
(1+𝑥)𝑒2𝑥

20
− ∫ (2 − 𝑡)𝜑(𝑡)𝑑𝑡

𝑥

0
, 

where 𝐾(𝑥, 𝑡, 𝜑(𝑡)) = (2 − 𝑡)𝜑(𝑡) is a continuous function over the region 𝐷. Thus, 

|𝐾(𝑥, 𝑡, 𝜑) − 𝐾(𝑥, 𝑡, 𝜓)| ≤ 𝜃(𝑥, 𝑡)|𝜑(𝑡) − 𝜓(𝑡)| 

                                    ≤ |(2 − 𝑡)𝜑(𝑡) − (2 − 𝑡)𝜓(𝑡)| 

                                              ≤ (2 − 𝑡)|𝜑(𝑡) − 𝜓(𝑡)|, 

there exists a nonnegative and continuous function 𝜃(𝑥, 𝑡) = 2 − 𝑡  in [0,1]2 . Defined on the 

space 𝐶([0,1]) , if we take 𝜃(𝑥, 𝑡) = (2 − 𝑡) = 𝐿  and 𝐿 ≤ 𝐿1  with 𝐿1 = 2 > 0 , 𝜌 =

max {
𝜃(𝑥,𝑡)(1−𝑒−𝐿1𝑥)

𝐿1
} =  

2(1−𝑒−2)

2
< 1, the integral equation has only one solution on [0,1]. 

Also, consider the following integral equation defined over region 𝐷 = {(𝑥, 𝑡, 𝑢) ∈ ℝ3 ∶  0 ≤

𝑥, 𝑡 ≤ 1, −∞ < 𝑢 < ∞},   

𝑢(𝑥) =
𝑥𝑒2𝑥

20
− ∫(1 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 , 

where 𝐻(𝑥, 𝑡, 𝑢(𝑡)) = (1 − 𝑡)𝑢(𝑡) is a continuous function over the region 𝐷. Thus, 

|𝐻(𝑥, 𝑡, 𝑢) − 𝐻(𝑥, 𝑡, 𝑣)| ≤ 𝜃(𝑥, 𝑡)|𝑢(𝑡) − 𝑣(𝑡)| 

                                     ≤ |(1 − 𝑡)𝑢(𝑡) − (1 − 𝑡)𝑣(𝑡)| 

                                            ≤ (1 − 𝑡)|𝑢(𝑡) − 𝑣(𝑡)|, 

there exists a nonnegative and continuous function 𝜃(𝑥, 𝑡) = 1 − 𝑡 in [0,1]2. Defined on the space 

𝐶([0,1]) , if 𝜃(𝑥, 𝑡) = (1 − 𝑡) = 𝐿  and 𝐿 ≤ 𝐿1  with 𝐿1 = 1 > 0 , 𝜌 = max {
𝜃(𝑥,𝑡)(1−𝑒−𝐿1𝑥)

𝐿1
} =

 
(1−0)(1−𝑒−1)

1
< 1, the given integral equation has one solution and is unique on [0,1]. 

Thus, 𝜑(𝑥) =
(1+𝑥)𝑒2𝑥

20
− ∫ (2 − 𝑡)𝜑(𝑡)𝑑𝑡

𝑥

0
 and 𝑢(𝑥) =

𝑥𝑒2𝑥

20
− ∫ (1 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
 

|𝐾(𝑥, 𝑡, 𝜑) − 𝐻(𝑥, 𝑡, 𝑢)| ≤ (2 − 𝑡)|𝜑(𝑡) − 𝑢(𝑡)|, 

let there exist a nonnegative and continuous function 𝛾(𝑥, 𝑡) = 2 − 𝑡  in [0,1]2 . So, there exists 

𝑁1 = 2 such that 𝛾(𝑥, 𝑡) = 𝑁 > 0 and 𝑁 ≤ 𝑁1, 
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𝑀 = max {𝑒−2𝑥∫(2 − 𝑡) 𝑒2𝑡𝑑𝑡

𝑥

0

} = max {𝑒−2𝑥 [
5

4
−
𝑥

2
−
5

4
𝑒−2𝑥]} = 0,58 

휀1 = max{𝑒
−2𝑥 |

(1 + 𝑥)𝑒2𝑥

20
−
𝑥𝑒2𝑥

20
|} =

1

20
. 

Also, 𝛼0 = max{|−1|, |−1|} = 1 for ∀𝑛 ∈ ℕ 

0 < 𝛼0𝑀 < 휀2 < 1, 

such that there is a constant 휀2. From the above processes, all the conditions of Theorem 3.2 are held. 

In this case, if 𝜑𝑛 → 𝑝 and 𝑢𝑛 → 𝑞 as 𝑛 → ∞, 

‖𝑝 − 𝑞‖∗ ≤
3휀1

(1 − 휀2)
=  
3.
1
20

0,42
≤ 0,357 

is provided. 

Example 3.4. Let's take the following integral defined over region 𝐷 = {(𝑥, 𝑡, 𝜑) ∈ ℝ3 ∶  0 ≤ 𝑥, 𝑡 ≤ 1,

−∞ < 𝜑 < ∞}, 

𝜑(𝑥) =
(𝜋+𝑥)𝑒3𝑥

10
+ ∫ 𝑡𝑠𝑖𝑛(𝜑(𝑡))

𝑥

0
𝑑𝑡, 

where 𝐾(𝑥, 𝑡, 𝜑(𝑡)) = 𝑡𝑠𝑖𝑛(𝜑(𝑡)) is a continuous function over the region 𝐷. Thus, 

|𝐾(𝑥, 𝑡, 𝜑) − 𝐾(𝑥, 𝑡, 𝜓)| ≤ 𝜃(𝑥, 𝑡)|𝜑(𝑡) − 𝜓(𝑡)| 

 ≤ |𝑡𝑠𝑖𝑛(𝜑(𝑡)) − 𝑡𝑠𝑖𝑛(𝜓(𝑡))| 

                                             ≤ 𝑡|𝜑(𝑡) − 𝜓(𝑡)| |2𝑐𝑜𝑠 (
𝜑(𝑡) + 𝜓(𝑡)

2
) 𝑠𝑖𝑛 (

𝜑(𝑡) − 𝜓(𝑡)

2
)| 

                                             ≤ |𝜑(𝑡) − 𝜓(𝑡)| |2𝑐𝑜𝑠 (
𝜑(𝑡) + 𝜓(𝑡)

2
)| |𝑠𝑖𝑛 (

𝜑(𝑡) − 𝜓(𝑡)

2
)| 

≤ 2|𝜑(𝑡) − 𝜓(𝑡)|, 

and there exists a nonnegative and continuous function 𝜃(𝑥, 𝑡) = 2  in [0,1]2 . Defined on the 

space 𝐶([0,1]) , if we take 𝜃(𝑥, 𝑡) = 2 = 𝐿  and 𝐿1 = 2  with 𝐿 ≤ 𝐿1 , 𝜌 = max {
𝜃(𝑥,𝑡)(1−𝑒−𝐿1𝑥)

𝐿1
} =

 
2(1−𝑒−2)

2
< 1, the integral equation has only one solution in [0,1]. 

Also, consider the following integral equation defined over region 𝐷 = {(𝑥, 𝑡, 𝑢) ∈ ℝ3 ∶  0 ≤

𝑥, 𝑡 ≤ 1, −∞ < 𝑢 < ∞} ,   
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𝑢(𝑥) =
𝑥𝑒3𝑥

10
+ ∫ (1 − 𝑡)𝑐𝑜𝑠(𝑢(𝑡))

𝑥

0
𝑑𝑡 , 

where 𝐻(𝑥, 𝑡, 𝑢(𝑡)) = (1 − 𝑡)𝑢(𝑡)𝑐𝑜𝑠(𝑢(𝑡)) is a continuous function over the region 𝐷. Thus, 

|𝐻(𝑥, 𝑡, 𝑢) − 𝐻(𝑥, 𝑡, 𝑣)| ≤ 𝜃(𝑥, 𝑡)|𝑢(𝑡) − 𝑣(𝑡)| 

≤ |(1 − 𝑡)𝑐𝑜𝑠(𝑢(𝑡)) − (1 − 𝑡)𝑐𝑜𝑠(𝑣(𝑡))| 

                                             ≤ |1 − 𝑡||𝑢(𝑡) − 𝑣(𝑡)| |−2𝑠𝑖𝑛 (
𝜑(𝑡) + 𝜓(𝑡)

2
) 𝑠𝑖𝑛 (

𝜑(𝑡) − 𝜓(𝑡)

2
)| 

                                             ≤ |−2||𝑢(𝑡) − 𝑣(𝑡)| |𝑠𝑖𝑛 (
𝜑(𝑡) + 𝜓(𝑡)

2
)| |𝑠𝑖𝑛 (

𝜑(𝑡) − 𝜓(𝑡)

2
)| 

                                             ≤ 2|𝑢(𝑡) − 𝑣(𝑡)|, 

and there exists a nonnegative and continuous function 𝜃(𝑥, 𝑡) = 2 in [0,1]2. Defined on the space 

𝐶([0,1]) , if 𝜃(𝑥, 𝑡) = 2 = 𝐿  and 𝐿 ≤ 𝐿1  with 𝐿1 = 2 , 𝜌 = max {
𝜃(𝑥,𝑡)(1−𝑒−𝐿1𝑥)

𝐿1
} =  

2(1−𝑒−2)

2
< 1 ,  

the given integral equation has one solution and is unique in [0,1]. 

Thus, 𝜑(𝑥) =
(𝜋+𝑥)𝑒3𝑥

10
+ ∫ 𝑡𝑠𝑖𝑛(𝜑(𝑡))

𝑥

0
𝑑𝑡 and 𝑢(𝑥) =

𝑥𝑒3𝑥

10
+ ∫ (1 − 𝑡)𝑐𝑜𝑠(𝑢(𝑡))

𝑥

0
𝑑𝑡 

|𝐾(𝑥, 𝑡, 𝜑) − 𝐻(𝑥, 𝑡, 𝑢)| ≤ 3|𝜑(𝑡) − 𝑢(𝑡)|, 

let there exist a nonnegative and continuous function 𝛾(𝑥, 𝑡) = 3 in [0,1]2. So, there exists 𝑁1 = 3 

such that 𝛾(𝑥, 𝑡) = 𝑁 and 𝑁 ≤ 𝑁1 

𝑀 = max{𝑒−3𝑥 ∫ 𝛾(𝑥, 𝑡) 𝑒3𝑡𝑑𝑡
𝑥

0
} = max{𝑒−3𝑥 ∫ 3 𝑒3𝑡

𝑥

0
𝑑𝑡} = 0,51, 

휀1 = max {𝑒−3𝑥 |
(𝜋+𝑥)𝑒3𝑥

10
−
𝑥𝑒3𝑥

10
|} =

𝜋

10
= 0,31. 

Also, 𝛼0 = max{|1|, |1|} = 1  for ∀𝑛 ∈ ℕ, 0 < 𝛼0𝑀 < 휀2 < 1  such that there is a constant 휀2 . 

From the above processes, all the conditions of Theorem 3.2 are held. In this case, if 𝜑𝑛 → 𝑝 and 

𝑢𝑛 → 𝑞 as 𝑛 → ∞, 

‖𝑝 − 𝑞‖∗ ≤
3휀1

(1 − 휀2)
=  
3. (0,31)

1 − 0,51
≤ 1,89 

is provided. 
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4. Conclusions 

In this study, first, the solution of nonlinear Volterra integral equations was examined by using 

the sequence obtained from the iteration algorithm of Eq (2.2). In fact, Theorem 3.1 shows that the 

solution of nonlinear Volterra integral equations is converged using the Picard’s three-step iteration 

algorithm. Additionally, in Theorem 3.2, data dependence for nonlinear Volterra integral equations is 

revealed, and this result is explained with an example. The findings presented here will contribute to 

many existing studies in the literature. Researchers can reconsider this iteration with different integral 

equations or apply a different iteration method for nonlinear Volterra integral equations. Thus, strong 

convergence and data dependence of integral equations can be achieved with different iteration 

methods. 
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