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Abstract. As obesity and its related health problems grow around the world,

efforts to control and manage weight is increasing in importance. It is well
known that altering and maintaining weight is problematic and this has led

to specific studies trying to determine the cause of the difficulty. Recent re-

search has identified that the body reacts to forced weight change by adapting
individual total energy expenditure. Key factors are an adaptation of resting

metabolic rate, non-exercise activity thermogenesis and dietary induced ther-

mogenesis. We develop a differential equation model based on the first law
of thermodynamics that incorporates all three adjustments along with natural

age related reduction of the resting metabolic rate. Forward time simulations
of the model compare well with mean data in both overfeeding and calorie

restriction studies.

1. Introduction. With two-thirds of all Americans estimated as overweight and
of these one-third as obese [49], there is considerable interest in weight change
and maintenance techniques. Caloric restriction or dieting is a popular method of
reducing weight, however, it is not only difficult to adhere to, but also may at times
not bring about the weight loss results we seek [5, 17, 19]. A similar phenomenon
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is also observed in overfeeding experiments where the weight gain is not as high as
expected even after adjustments for altered body composition [21, 25, 27, 39].

There are three components of energy expenditure that contribute to adjustment
during changes in energy intake. One reason that expected weight reduction may
not be observed or weight loss maintenance difficult to achieve is due to metabolic
adaptation. Metabolic adaptation occurs when the body adapts to caloric restric-
tion by decreasing resting metabolic rate (RMR), the amount of energy expended
while at rest. This decrease is beyond the expected decrease in RMR due to change
in energy stores (body mass) [17, 29]. Metabolic adaptation has been observed in
calorie restricted humans in clinical studies for 3-8 months [17, 29]. There has been
discussion about whether this adjustment will eventually stabilize during longer
periods of caloric restriction, however, a laboratory controlled longitudinal 11-year
study of calorie restricted Rhesus monkeys found a metabolic adjustment of 13%
lower than accounted by altered body composition [33]. There appears to be con-
siderable variance in how much metabolic adaptation inhibits individual weight loss
and this variance is currently a topic of serious investigation by medical researchers.

An adjustment has also been observed in the rate of energy expended due to the
thermic effect of food during both overfeeding and caloric restriction studies[15, 27].
This adjustment exceeds the rate of energy expended during digestion beyond
changes accounted for in body composition and was examined through a math-
ematical model in a recent paper by K. Hall [15].

Finally, an interesting phenomena observed in caloric restriction and overfeeding
studies is the change in non-exercise activity thermogenesis or NEAT. The impact of
NEAT on resistance to change in body mass has been the focus of several overfeeding
studies [21, 25, 27, 39]. C.K. Martin et al. also found that physical activity levels
decreased over three months of calorie restriction [29].

In order to fully understand how caloric intake impacts weight change, a math-
ematical model that incorporates observed clinical adaptations to change in intake
could serve as a tool to set lifestyle weight reduction and maintenance goals ac-
cordingly. In this paper we develop and analyze a differential equation that models
weight change and incorporates adaptations that defend baseline body mass.

Mathematical modeling of weight dynamics in humans has a long and scattered
history [1, 2, 3, 14, 15, 23, 24]. Some of the models aggregate observed clinical
and laboratory data to make estimates on expected outcomes. We will refer to this
type of formula as a statistical model. Recent research has focused on deterministic
energy balance models based on the first law of thermodynamics. In our attempt to
understand the impact of metabolic adaptation on weight changes, we will extract
ideas, parameter values, and terms from several of these recent models. In partic-
ular, we note that the following four ideas appearing in previous models were used
to develop the model in this paper:

• The Kozusko model in [23] incorporated metabolic adjustment and a nonlinear
RMR term. The Kozusko model uses Kleiber’s Law to model RMR which is
discussed in Section 2.4.

• The Chow-Hall model in [1] made simplifying modifications to the original
system in [14] to arrive at a one dimensional differential equation.

• The Hall model in [15] applies a multiplier effect for the adaptation of dietary
induced thermogenesis.

• The Christiansen-Garby-Sorenson model in [3] computes an efficiency param-
eter that accounts for the energy expended to store energy during weight gain.
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The model presented here incorporates the ideas used above along with the fol-
lowing modifications:
• We model resting metabolic rate by an affine function of body mass to a power

based on a statistical model developed by Livingston and Kohlstadt [28].
• We incorporate the continuous effects of aging on resting metabolic rate and

on body mass.
• We incorporate adaptation of non-exercise activity thermogenesis to changes

in intake.
In the next section, we develop our model beginning with the concept of energy

balance.

2. Model development.

2.1. The energy balance principle. The energy balance principle discussed in
physiology and nutrition literature is based on the application of the first law of
thermodynamics to an open system [6]. The human body is considered an open
system because energy can be added to the system by input of mass flow in the
form of food. The first law reduces to the usual energy balance equation seen in
nutrition and physiology literature as:

R = I − E, (1)

where R is the rate of kcal/d that are stored or lost, I is the rate of kcal/d that is
ingested and E is the rate of kcal/d expended [22, 31].

For specific cases, the terms in (1) need to be developed accordingly based on
assumptions behind what we are examining. For example, in [40], the terms and
parameters in the energy balance model were developed to understand how a fetus
grows in utero. Each term was constructed with attention given to how this value
is or can be measured and validated. In some cases, parameters and variables
were formulated to simplify the measurements or mathematics, with justification
that these assumptions do not overly reduce the quality of the model results. In
a similar manner, we now develop formulations for each of the quantities R, I and
E in the energy balance equation. Because of the large number of variables and
parameters, we summarize the description of all notation in Table 1.

The following is a summary of the list of assumptions behind our model.
1. The model is developed for a non-diabetic adult who is not involved in stren-

uous exercise. According to CDC estimates, the lack of regular high levels of
physical activity accounts for 4 out of 5 Americans [31].

2. The caloric equivalent of glucose and glycogen levels are approximated by a
time averaged constant, G, measured in kcals. The time interval over which
this constant is determined is on the order of one week. This constant does
not need to be measured for the purposes of this model.

3. Total kcals of food ingested per day is approximated by a time averaged
constant, I measured in kcals/day. The time interval over which this constant
is determined is on the order of one week. This parameter can be estimated
using traditional methods.

4. Fat free mass is a function of fat mass. We obtain a linear approximation
correlating fat free mass to fat mass. The nonlinear relationship between fat
free mass and fat mass has been observed by G. Forbes in [7] and recently
re-examined in [13].

5. The change in NEAT is directly proportional to the change in E [27].
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Notation Description Estimation Units

Energy Balance Terms R Rate of energy accretion N/A kcal/day
I Rate of energy intake Average value kcals/day
E Rate of energy expended N/A kcals/day
DIT Dietary induced thermogenesis N/A kcals/day
PA Volitional activity N/A kcals/day
RMR Resting energy requirements Livingston-Kohlstadt kcals/day
NEAT Non-exercise activity N/A kcals/day

thermogenesis
State Variables F (t) Fat mass on day t N/A kg

FFM(t) Fat free mass on day t FFM = α1F + b kg
W Total body mass W=FFM+F kg

Parameters G Time averaged N/A kcal
kcals of glucose

f Proportion of FFM(t) of
muscle tissue available 0.30 ≤ f ≤ 0.50 N/A

cl Caloric value of kg
of fat free mass 955.384 kcals/kg

cf Caloric value of kg
of fat mass 7165 kcals/kg

β DIT = βI 0.04 ≤ β ≤ 1.14 N/A
m Proportion of body mass

related to PA N/A kcals/kg/d
aF , aM Proportionality constant aF = 248 N/A

Livingston-Kohlstadt aM = 293
pF , pM Mass Exponent pF = 0.4356 N/A

in Livingston-Kohlstadt pM = 0.4330
yF , yM Age constant yF = 5.09 N/A

from Livingston-Kohlstadt yM = 5.92
A0 Initial Age A0 > 0 years
A Age A = A0 + t/365 days
a Percent of metabolic

adaptation 0 ≤ a ≤ 1 N/A
e Efficiency of depositing

stored energy Male: e = 0.82 N/A
Female: e = .83 N/A

α1 Slope of linear
relationship Male: aα1 = 0.56 N/A
between FFM and F Female: α1 = 0.32 N/A

b FFM equation b > 0, baseline kg
intercept data

α W = αF + b α = α1 + 1 N/A
r Proportion change in NEAT r = 2/3

to change in E

Table 1. Legend of Notation

6. Based on clinical observations The kcals/day attributed to dietary induced
thermogenesis is a direct proportion of total kcals/day ingested. This propor-
tion, ω ranges from 4-15% of total caloric intake per day. Similar to the term
formulated for DIT in [15], when the rate of energy ingested changes, DIT is
assume to adjust by a multiplicative constant factor, β, which is greater than
1 for overfeeding situations and between zero and one for calorie restriction
cases.

7. As in the Chow-Hall model, the rate kcals/day due to volitional physical
activity is assumed to be entirely weight bearing. That is, we assume that
the kcals expended in physical activity that is non-weight bearing is negligible.
Similar to the Chow-Hall model, we also formulate this expenditure as a direct
proportion of body mass.

8. Energy is required to store energy. We model this by an efficiency parameter
for how much the rate of net energy gained changes to stored energy, which
is estimated in [3] to be about 83% for women and 82% for men.

2.2. The rate of energy storage, R. Energy that is not used by the body is
stored in the form of glycogen, lipids and protein [18]. Glycogen is a storage mol-
ecule of the body’s short-term energy resource, glucose [9]. During normal periods
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in which an individual does not perform prolonged exercise or fasting, the body
attempts to keep the concentration of glucose in the bloodstream at 80 − 100 mg
per 100mL of blood [9]. Because of the regulatory mechanism that works to main-
tain the glucose/glycogen level in a narrow range, we can assume its time-averaged
value to be constant. We remark here that this assumption has been compared to
successfully to observed data in [1]. Similar to the Chow-Hall model [1], we denote
the total time averaged amount of glucose and glycogen in the body by the constant
G, expressed in terms of kcals of glucose energy.

Lipids (mainly in the form of fatty acids) are the nutrients containing the most
energy per unit mass[18]. Unlike glucose, fat can be stored in large quantities for
extended lengths of time in the form of triacylglycerols under the adipose tissue
spread throughout the external human body. Therefore, fat mass is the main long-
term energy storage mechanism of the human body. We denote the total kg of fat
mass of the body at time t by the function F (t).

Protein’s building blocks, amino acids, can be broken down and transformed to
glucose to be used for energy through amino acid metabolism [18]. Although there
are small amounts of protein stored in the liver, the major portion is contained in
the body’s muscle tissue (Gilbert (2000)). It is estimated that 30 to 50% of total fat
free mass is stored as muscle tissue [20]. If we denote the total kg fat free mass on
day t by FFM(t), we have that fFFM(t) is the proportion of FFM(t) of muscle
tissue available as energy reserve. Total body mass, W , is a sum of fat free mass
and fat mass:

W = FFM(t) + F (t).

G. Forbes had observed an algebraic relationship between fat mass and fat free
mass [7] . The Forbes curve developed for women in [7],

FFM(t) = 10.4 ln(F (t)) + 14.2

considers FFM as an increasing function of FM and has been recently re-examined
by K. Hall in [13]. At this time, we will only consider a linear approximation of this
correlation:

FFM(t) = α1F (t) + b,

where α1, b are positive constants. The linear approximation yields,

W = α1F (t) + b + F (t) = αF (t) + b (2)

where α = 1 + α1. Estimations of the parameters α1 and b will be discussed in the
simulation section.

Separating R in the three different components, G, FFM(t), F (t) we have

R =
dG

dt
+ cl

(
f

dFFM

dt

)
+ cf

dF

dt
(3)

where cl is the caloric value of a kg of usable fat free mass and cf is the caloric
value of usable fat mass. The values of cl and cf were obtained from [3] and appear
in Table 1.

Because G is a time averaged constant, dG
dt = 0. Substituting this and the formula

relating FFM(t) to F (t) in (2) yields

R = λ
dF

dt

where λ = clfα1 + cf .
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2.3. The rate of energy intake, I. Applying the concept of time averaging (see
[1]), the rate of intake, I, is the total time averaged rate in kcal/day of food ingested.
This value is estimated in the simulation section by using benchmark percentages
based on age, weight and gender.

2.4. The rate of energy expenditure, E. The rate of energy expenditure con-
sists of four different quantities; the kcals/day used for dietary induced thermogene-
sis (DIT), volitional physical activity (exercise) (PA), basal metabolic rate (RMR),
and non-exercise activity thermogenesis (NEAT) [10]:

E = DIT + PA + RMR + NEAT. (4)

DIT is the energy involved in processing food. This consists of digestion, ab-
sorption, metabolization, storage and transport of ingested food and is estimated
to account for 4-15% of total energy expenditures [10]. Although DIT was observed
to be sensitive to amount of protein ingested, we do not examine this aspect of DIT
[46]. In the case of an aggregated composition of food intake, we assume that DIT
is a direct proportion of the rate of energy intake, I, with proportionality constant,
ω. In [15], the adjustment to calorie reduction on DIT was examined by multiplying
ω by an adjustment factor. In fact, such an adjustment has also been observed in
overfeeding studies by a factor of up to 14% [27]. We model the adjustment by a
multiplier that is greater than 1 for the overfeeding case and less than one in the
calorie restriction case. As in [15] we absorb the multiplier into one constant β.

Therefore, the energy expended for dietary induced thermogenesis is

DIT = βI.

By physical activity, PA, we specifically mean volitional exercise such as sports
and fitness related activity. PA can accounts for 20-40% of total energy expenditures
[10]. Strenuous exercise or starvation cause glycogen stores to deplete [9]. As a result
the liver begins to produce ketone bodies as an alternative energy source. Because
we are not modeling extreme cases such as starvation, we assume the physical
activity is light to moderate and does not deplete glycogen stores. Some of PA is
what we refer to as weight bearing activity and some of PA is non-weight bearing.
Weight bearing activities involve activities that require us to carry our body weight.
For example, walking and running are examples of weight bearing activities. As in
the Chow-Hall model we assume that kcals used for non-weight bearing activity is
negligible.

Thus, the rate of weight bearing exercise is estimated as a direct proportion of
body mass and so we model PA by,

PA = mW = m(αF (t) + b).

where m is the proportionality constant in kcals/kg/day.
An individual’s RMR is the rate of energy required to sustain life. RMR is

measured in controlled conditions. The subject must be in a relaxed (preferably just
having awakened), postabsorptive state (12 hours or more of fasting) [10]. Thus, the
direct determination of RMR is not simple. There exists several simple statistical
formulas that estimate of RMR depending on sex, total body mass, height, and
age. These formulas are based on extensive experimental data which was analyzed
using predictive regression equations. Although these estimates work well in most
situations, they tend not to be as reliable in extreme cases such as obesity [36].
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The most commonly used formula is the statistically based Harris-Benedict equa-
tion [16], which assumes that RMR is affinely related to body mass. There are many
other formulas found in the literature and a summary of several of the most com-
mon can be found in [44]. We used published data to compare different formulas
in the literature against RMR data and found the statistically generated formula
proposed by Livingston and Kohlstadt provides the best estimates of RMR [28].
The Livingston-Kohlstadt formula is an affine function of body mass to a power:

RMR = (aiW
pi − yiA) . (5)

where aM = 293, aF = 248, pM = 0.4330, pF = 0.4356, yM = 5.92, yF = 5.09, W
represents body mass, and A represents age.

In order to view Equation (5) as a continuous function of age, we consider A as
a time varying function, A = A0 + t/365, where A0 is the age of the individual at
t = 0. Metabolic adaptation during calorie restriction results in a basal metabolic
rate that is lower than expected [29]. The expected basal metabolic rate based on
body mass in our model is given by Equation (5). If a is the percent of metabolic
adaptation where 0 ≤ a ≤ 1, then we model the contribution of resting metabolic
rate with adaptation to energy expenditures by

RMR = (1− a) (aiW
pi − yi(A0 + t/365)) .

Individual activity that is non-volitional is characterized as nonexercise activity
thermogenesis (NEAT) [27]. NEAT is the thermogenesis that accompanies physical
activities other than volitional exercise, such as the activities of daily living, fid-
geting, spontaneous muscle contraction, and maintaining posture. The possibility
that NEAT might mediate resistance to fat gain was studied in [27]. Spontaneous
physical activity (a component of NEAT) is a familial trait that shows marked
inter-individual differences in its contribution to daily energy expenditure [34, 42].
The work in [27] was conducted to determine if changes in NEAT could explain the
wide variations in individual weight gain due to overfeeding.

Interestingly, NEAT is found to change during both over-feeding experiments
[25, 27] and caloric restriction in obese individuals [5]. Specifically, subjects in over-
feeding experiments were found to increase involuntary movements such as fidgeting
[27]. Likewise, subjects who were caloric restricted decreased NEAT by altering pos-
ture and decreasing involuntary fidgeting [5].

NEAT is an extremely difficult quantity to measure even in very controlled set-
tings. In the study published in [27] subjects were monitored to conduct volitional
exercise at constant, low levels, which was confirmed through questionnaires and
direct measures of physical activity. Although the energy expended in volitional
physical activity changes with body composition (as we have modeled PA), the
study makes the assumption that these changes are small and negligible in order to
obtain an estimate of the change in NEAT. When this assumption was made in the
overfeeding study in [27], the change in NEAT was estimated by computing total
volitional and non-volitional expenditures before and after overfeeding and sub-
tracting the corresponding DIT and RMR expenditures. In this manner, estimates
for the change in NEAT over time were related to the change in E. Observations
in [27] found that the change in NEAT was equal to 2/3 the change in E. Based
on this conclusion, if we make the assumption that the change in NEAT is directly
proportional to the change in E, we have:

∆NEAT = r∆E
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where r represents the proportionality constant relating the change in NEAT to the
change in E. Expanding E using (4) and applying the linearity of the ∆ operation
yields:

∆NEAT = r(∆DIT + ∆PA + ∆RMR + ∆NEAT )

⇒ ∆NEAT =
r

1− r
(∆DIT + ∆PA + ∆RMR)

Integration over time allows us to solve for NEAT in terms of the remaining
energy expenditures:

NEAT =
r

1− r
(DIT + PA + RMR) + C

where C is a constant of integration.
For the purpose of simulations initial NEAT can be estimated by benchmark

percentages (10% of E) appearing in the literature [10, 31] and as a result C can be
solved for in terms of the initial conditions.

Combining each term we have formulated for energy expenditure yields

E = βI︸︷︷︸
DIT

+

P A︷ ︸︸ ︷
mW + (1− a)

(
ciW

pi − yi

(
A0 +

t

365

))
︸ ︷︷ ︸

RMR

+

NEAT︷ ︸︸ ︷
r

1− r
(DIT + PA + RMR) + C (6)

The Christiansen-Garby-Sorenson model addresses the fact that energy is required
to store energy. As part of their model development, they take special care to factor
in this requirement. Based on empirical data, the authors calculate an efficiency
of energy storage constant, e which can be considered as a multiplier of the rate
of energy in minus the rate of energy expended to convert to the rate of energy
stored. This efficiency constant was estimated to be around 82% for men and
83% for women. Likewise, energy is required to unpack energy stores, however the
efficiency value is not known for this case so we assume as in previous models that
this value is e = 1. Applying this concept and the expressions obtained for R, I and
E and substituting into Equation (1) we obtain the final model,

dF

dt
= γ(t)− ηF − δ(mF + b)pi , (7)

with initial condition
F (0) = F0 > 0,

where

γ(t) =
e

λ

(
I − 1

1− r

(
βI + mb− yi

(
A0 +

t

365

)))
η =

emα

λ(1− r)

δ =
eci

λ(1− r)

3. Mathematical analysis. In this section we address the existence, uniqueness
and non-negativity of solutions to (7). The right hand side of Equation 7 is contin-
uous guaranteeing an interval of existence of the solution on [0, ε) where ε > 0 [12].
In order to guarantee non-negativity of solutions, we require the right hand side of
the differential equation be quasi-positive, that is, dF/dt ≥ 0 whenever F = 0 [30].
The right hand side is quasi-positive exactly when

γ(t) ≥ δbpi . (8)
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Because the model assumptions have not been developed for a case where fat
stores have been completely depleted as in the case of starvation, the above restric-
tion makes realistic sense in terms of what Equation (7) is essentially modeling. A
starvation model where F may be allowed to go to zero has been developed in [41].

To guarantee existence for all time, let us assume on the contrary that there is
a b0 such that the limt→b0 F (t) =∞. Then for some T > 0, there is a subsequence
tk with tk → b0 and F (tk) increasing to infinity.

But then substitution into the differential equation yields

γ(tk)− ηF (tk)− δ(mF (tk) + b)pi → −∞

which implies F ′(tk) → −∞ which creates a contradiction. Therefore under con-
dition (8) a non-negative solution to the initial value problem exists for all time
t ≥ 0

4. Parameter estimations, numerical simulations, and comparison to ex-
perimental data. A program was written in Maple that simulates the model with
an input of baseline information. Using data from an overfeeding study [43] and
three caloric restriction studies [8, 35, 45] we are able to compare actual mean data
to model estimates. We emphasize that parameter estimates were not determined
using these data sets. Table 2 describes all parameter values that are universal to
numerical simulations.

Constant Value Reference
r r = 2/3 [27]
e∗ e = 0.83 - women and e = 0.82 - men. [3]
cl, cf cl = 955.384, cf = 7165, [3]

aM , aF , pM , pF , yM , yF aM = 293, aF = 248, aM = 0.4330
pF = 0.4356, yM = 5.92, yF = 5.09 [28]

α1 men α1 = 0.54; slope between (28.4kg, 67.7kg) (23.6kg,65.1kg) [37]
α1 women α1 = 0.324; slope between (44.2kg,49.6kg) and (37.7kg,47.5kg) [11]
f f = 0.30 [19]
β β = 1.14: overfeeding, β = 0.075: caloric restriction [27, 46]
a∗ a = 0.334, 0.059 Calorie Restriction 3,6 month

a = 0.27, 0.053 Very Low Calorie Diet 3, 6 month [29]

Table 2. Constants that are universal to all simulations. ∗The
parameter e is required only for overfeeding simulations and the
parameter a is nonzero for caloric restriction simulations.

4.1. A comparison to an overfeeding study: Simulation 1. In [43], 23 men
with mean age 20 were fed 1000 over baseline intake and observed for a 100 day
period. The model was simulated using the baseline age, weight and RMR provided
in [43]. NEAT is a extremely difficult to measure directly and baseline values
are never provided in the literature. To estimate baseline values of NEAT, we
use the benchmark values of adaptive thermogenesis in [31] that estimate adaptive
thermogenesis as 10% of total expenditures. We also estimate baseline DIT to be
0.075 of baseline intake. For a summary of baseline information, we refer to Table
3.

The time series solution of baseline information in Table 3 for weight, fat mass
and NEAT up to 100 days are shown in Figure 1.

The satisfying model comparison of data from [43] at the 100 day mark is given
in Table 4.
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Baseline Information Measured in study Estimated through benchmark percentages
RMR 1634 kcal/day
E 60% of E is RMR: 2723.33 kcal/day
DIT 7.5% of E: 203.25 kcal/day
NEAT 10% of E: 272.33 kcal/day
PA E-RMR-NEAT-DIT: 612.75 kcal/day
FFM 53.4 kg
F 6.9kg
W 60.3kg

Table 3. Baseline information used to simulate model compared
to data in [43].

Figure 1. Forward simulation of baseline data in [43] for F (t),W
and NEAT.

Actual Model with NEAT term Model without NEAT term
Weight in kg 68.4 68.4 72.5
Fat Mass in kg 12.3 12.2 15
Fat Free Mass in kg 56.1 56.1 57.5

Table 4. Comparison of model with and without NEAT term to
data in [43] at 100 days. Fat mass and fat free mass are overesti-
mated if NEAT term is not included.

We remark that the data in [43] is fairly homogenous (all participants around
the same age) and the standard deviation of the baseline and final values from the
study is low.

4.2. Three calorie restriction studies - simulations 2,3,4. Simulation 2 serves
to compare model estimates to aggregate data published in [8]. The data in [8],
which we apply baseline information to simulate the model, involved 24 females on
an 800kcal/d liquid diet for 12 weeks. The average age of women in the study was
42.1 years. Because this study is similar to the 890 kcal/day diet applied in [29],
we apply the metabolic adaptation observed [29] at the 3 month mark of a = 2.7%.

Simulation 3 compares model estimates to aggregate data published in [45]. In
this study, 108 women were placed on an 800 kcal/d diet for 21 days in a closed
metabolic ward. As in the previous simulation, we apply the 3 month percentage
metabolic adaptation seen in [29] of a = 2.7%.

Finally, Simulation 4 placed six women on a low calorie diet of 25% below baseline
for 6 months. In this study, baseline caloric intake is not provided, and as a result,
we estimated baseline intake by dividing the estimate for baseline RMR by 60%.
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Reference Quantity Value∗

[8] RMR 1662.5 kcal/day
E 2770.83kcal/day∗

DIT 207.81 kcal/day∗

NEAT 277.08 kcal/day∗

PA 623.44 kcal/day∗

FFM 53.5 kg
F 48.0kg
W 102.5 kg
a 0.027

[45] RMR 1662.13 kcal/day∗

E 2770.21kcal/day∗

DIT 207.77 kcal/day∗

NEAT 277.02 kcal/day∗

PA 623.30 kcal/day∗

FFM 50.9 kg
F 49.9kg
W 100.8 kg
a 0.027

[35] RMR 1412.12 kcal/day∗

E 2353.53 kcal/day∗

DIT 176.51 kcal/day∗

NEAT 235.35 kcal/day∗

PA 529.54 kcal/day∗

FFM 45.7 kg
F 27.8 kg
W 73.5 kg
a 0.059

Table 5. Baseline information and parameter a used to simulate
data from [8, 35, 45]. ∗Baseline information not provided; bench-
mark percentages used as in Table 3.

Study Actual End Weight in kg NEAT No NEAT No NEAT
and Adaptation or Adaptation

[8] 85.86 85.00 82.00 80.00
[45] 95.78 96 95 95
[35] 68.5 65.5 63 61.5

Table 6. Comparison of model to body mass data in calorie re-
striction studies [8, 35, 45].

Taking 25% of the total caloric intake baseline numbers yielded a 588.38 kcal/d
restriction which was similar to the 500 kcal/d restriction in [29]. In the 500 kcal/d
analysis in [29], we obtain a = 0.059 at the 6 month mark.

A summary of baseline data for Simulations 2,3 and 4 are provided in Table 5
and a summary of end value comparisons appear in Table 6. The importance of
including a term for NEAT and applying metabolic adaption are seen by comparison
to model simulations without these modifications. In fact, estimates without NEAT
and metabolic adaptation indicate weight loss that is lower than observed. We
remark that the simulation using baseline information from [35] had more error
than the other two studies. This error may be due to estimation error on exactly
how many kcals subjects in this study actually reduced by.

4.3. Theoretical simulations. The beauty of a mathematical model is that you
now can provide longer time projections than possible in controlled experiments.
To this end, we simulated the baseline information in [35] and [43] for a five year
period. Figure 2 depicts a simulation of the model of weight loss with metabolic
adaptation of 5% using the baseline information in [35] projected over five years.
Likewise, Figure 3 projects weight gain with overfeeding of a 1000 kcal/day over
baseline from data in [43] and the resulting simulation over five years. Finally, we
simulated a case of no caloric change so we can observe the effects of natural aging
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Figure 2. Simulation of weight loss over a five year period using
baseline information from [35].

Figure 3. Simulation of weight gain over a five year period using
baseline information from [43].

on weight gain. As depicted in Figure 4 we see the incremental increase of weight
over a 20 year period for a female with baseline weight of 52kg and age 38.

5. Conclusion. One major concern in measuring energy expenditures is the dif-
ficulty one has in obtaining comprehensive data on its components, NEAT in par-
ticular. As part of our model formulation, we develop a term based on clinical
observations to directly quantify NEAT as a time dependent function. The model
presented here also quantifies metabolic adaptation due to caloric restriction that
serve to defend baseline body weight. Although the question of how much each
of these adaptations affect changes in individual body mass, model comparisons to
published data justify the existence of adaptations on weight change due to both
overfeeding and caloric restriction.

Limitations of the model assumptions need to be examined for future work.
The model was developed for non-diabetic healthy individuals, however, with 2/3
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Figure 4. Simulation of weight gain due to aging.

of the United States population as overweight, there is a significant portion of
the population undergoing weight related medical issues. In addition, the model
comparisons provided evaluate the model against statistically aggregated data. In
order to validate model reliability, comparisons need to be made to individual data.
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