Loading [MathJax]/jax/output/SVG/jax.js
Research article Recurring Topics

Spotting from The Rightmost Deep: A Temporal Field Advantage in A Behavioural Task of Attention And Filtering

  • During the past decades, animal and human physiological studies have suggested that subcortical structures that are part of the extrageniculate pathways have an important role to play in the attentive selection of targets and the filtering of distractors. However, not much has been done to investigate the filtering of distractors in purely behavioural experiments through cues that might reveal extrageniculate functions, such as the asymmetry in performance between the nasal and the temporal visual fields. Here, under monocular conditions, participants viewed laterally and tachistoscopically presented sets of visual stimuli and were required to decide whether a target was present in the set or not. The manipulation of attention demands was achieved by varying the degree of spatial organization of the stimuli. A temporal field advantage in detection accuracy was found, and was observed only for disorganised sets of stimuli, that is, when demands on attention were greater. Furthermore, this pattern was found only for stimuli projected to the right hemisphere. The results suggest that the extrageniculate pathways of the right hemisphere in humans are involved in filtering out distractors. They are discussed in light of findings and theories about extrageniculate mediation of selective attention.

    Citation: George A. Michael, Raphaël Mizzi, Cyril Couffe, Germán Gálvez-García, Élodie Labeye. Spotting from The Rightmost Deep: A Temporal Field Advantage in A Behavioural Task of Attention And Filtering[J]. AIMS Neuroscience, 2016, 3(1): 56-66. doi: 10.3934/Neuroscience.2016.1.56

    Related Papers:

    [1] Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227
    [2] Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013
    [3] Caterina Balzotti, Maya Briani . Estimate of traffic emissions through multiscale second order models with heterogeneous data. Networks and Heterogeneous Media, 2022, 17(6): 863-892. doi: 10.3934/nhm.2022030
    [4] Emiliano Cristiani, Smita Sahu . On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002
    [5] Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
    [6] Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255
    [7] Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004
    [8] Paola Goatin . Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4(2): 287-301. doi: 10.3934/nhm.2009.4.287
    [9] Michael Herty, Adrian Fazekas, Giuseppe Visconti . A two-dimensional data-driven model for traffic flow on highways. Networks and Heterogeneous Media, 2018, 13(2): 217-240. doi: 10.3934/nhm.2018010
    [10] Alberto Bressan, Ke Han . Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8(3): 627-648. doi: 10.3934/nhm.2013.8.627
  • During the past decades, animal and human physiological studies have suggested that subcortical structures that are part of the extrageniculate pathways have an important role to play in the attentive selection of targets and the filtering of distractors. However, not much has been done to investigate the filtering of distractors in purely behavioural experiments through cues that might reveal extrageniculate functions, such as the asymmetry in performance between the nasal and the temporal visual fields. Here, under monocular conditions, participants viewed laterally and tachistoscopically presented sets of visual stimuli and were required to decide whether a target was present in the set or not. The manipulation of attention demands was achieved by varying the degree of spatial organization of the stimuli. A temporal field advantage in detection accuracy was found, and was observed only for disorganised sets of stimuli, that is, when demands on attention were greater. Furthermore, this pattern was found only for stimuli projected to the right hemisphere. The results suggest that the extrageniculate pathways of the right hemisphere in humans are involved in filtering out distractors. They are discussed in light of findings and theories about extrageniculate mediation of selective attention.


    A taxis is the movement of an organism in response to a stimulus such as chemical signal or the presence of food. Taxes can be classified based on the types of stimulus, such as chemotaxis, prey-taxis, galvanotaxis, phototaxis and so on. According to the direction of movements, the taxis is said to be attractive (resp. repulsive) if the organism moves towards (resp. away from) the stimulus. In the ecosystem, a widespread phenomenon is the prey-taxis, where predators move up the prey density gradient, which is often referred to as the direct prey-taxis. However some predators may approach the prey by tracking the chemical signals released by the prey, such as the smell of blood or specific odo, and such movement is called indirect prey-taxis (cf. [1]). Since the pioneering modeling work by Kareiva and Odell [2], prey-taxis models have been widely studied in recent years (cf. [3,4,5,6,7,8,9,10,11,12]), followed by numerous extensions, such as three-species prey-taxis models (cf. [13,14,15]) and predator-taxis models (cf. [16,17]). The indirect prey-taxis models have also been well studied (cf. [18,19,20]).

    Recently, a predator-prey model with attraction-repulsion taxis mechanisms was proposed by Bell and Haskell in [21] to describe the interaction between direct prey-taxis and indirect chemotaxis, where the direct prey-taxis describes the predator's directional movement towards the prey density gradient, while the indirect chemotaxis models a defense mechanism in which the prey repels the predator by releasing odour chemicals (like a fox breaking wind in order to escape from hunting dogs). The model reads as

    $ {ut=dΔu+u(a1a2ua3v),xΩ, t>0,vt=(v+χvwξvu)+ρv(1v)+ea3uv,xΩ, t>0,wt=ηΔw+ruγw,xΩ, t>0,uν=vν=wν=0,xΩ,t>0,(u,v,w)(x,0)=(u0,v0,w0)(x),xΩ, $ (1.1)

    where the unknown functions $ u(x, t) $, $ v(x, t) $ and $ w(x, t) $ denote the densities of the prey, predator and prey-derived chemical repellent, respectively, at position $ x \in \Omega $ and time $ t > 0 $. Here, $ \Omega\subset \mathbb{R}^n $ is a bounded domain (habitat of species) with smooth boundary $ \partial\Omega $, and $ \nu $ is the unit outer normal vector of $ \partial\Omega $. The parameters $ d $, $ \eta $, $ \chi $, $ \xi $, $ a_1 $, $ a_2 $, $ a_3 $, $ e $, $ \rho $, $ r $, $ \gamma $ are all positive, where $ \chi > 0 $ and $ \xi > 0 $ denote the (attractive) prey-taxis and (repulsive) chemotaxis coefficients, respectively. The predator $ v $ is assumed to be a generalist, so that it has a logistic growth term $ \rho v(1-v) $ with intrinsic growth rate $ \rho > 0 $. More modeling details with biological interpretations are referred to in [21]. We remark that the predator-prey model with attraction-repulsion taxes has some similar structures to the so-called attraction-repulsion chemotaxis model proposed originally in [22], where the species elicit both attractive and repulsive chemicals (see [23,24,25,26] and references therein for some mathematical studies).

    The initial data satisfy the following conditions:

    $ v0C0(¯Ω),u0,w0W1,(Ω), and u0, v0, w00 in ¯Ω. $ (1.2)

    In [21], the global existence of strong solutions to (1.1) was established in one dimension ($ n = 1 $), and the existence of nontrivial steady state solutions alongside pattern formation was studied by the bifurcation theory. The main purpose of this paper is to study the global dynamics of (1.1) in higher dimensional spaces, which are usually more physical in the real world. Specifically, we shall show the existence of global classical solutions in all dimensions and explore the global stability of constant steady states, by which we may see how parameter values play roles in determining these dynamical properties of solutions.

    The first main result is concerned with the global existence and boundedness of solutions to (1.1). For the convenience of presentation, we let

    $ K1=max{a1a2,u0L(Ω)},  K2=max{a1K1+a2K21,a3K1} $ (1.3)

    and

    $ K3(z)=23z12zdz(n+2(z1)K22z+1)z+12((z1)(4z2+n)K21)z12+23zz2d1z((z1)ξ2z+1)z+1z((4z2+n)K21)1z. $ (1.4)

    Then, the result on the global boundedness of solutions to (1.1) is stated as follows.

    Theorem 1.1 (Global existence). Let $ \Omega\subset \mathbb{R}^n(n\geqslant1) $ be a bounded domain with smooth boundary and parameters $ d $, $ \eta $, $ \chi $, $ \xi $, $ a_1 $, $ a_2 $, $ a_3 $, $ e $, $ \rho $, $ r $, $ \gamma $ be positive. If

    $ \rho{>0,n2,2K3([n2]+1)[n2]+1,n>2, $

    where $ K_3(p) $ is defined in $(1.4)$, then for any initial data $ (u_0, v_0, w_0) $ satisfying $(1.2)$, the system $(1.1)$ admits a unique classicalsolution $ (u, v, w) $ satisfying

    $ u, \ v, \, w\in C^0(\overline{\Omega}\times[0, +\infty))\cap C^{2, 1}(\overline{\Omega}\times(0, +\infty)), $

    and $ u, v, w > 0 $ in $ \Omega\times(0, +\infty) $. Moreover, there exists a constant $ C > 0 $ independent of $ t $ such that

    $ u(,t)W1,(Ω)+v(,t)L(Ω)+w(,t)W1,(Ω)Cfor all t>0. $

    Our next goal is to explore the large-time behavior of solutions to (1.1). Simple calculations show the system (1.1) has four possible homogeneous equilibria as classified below:

    $ {(0,0,0), (0,1,0), (a1a2,0,ra1γa2),if a1a3,(0,0,0), (0,1,0), (a1a2,0,ra1γa2),(u,v,w),if a1>a3, $

    with

    $ u=ρ(a1a3)ρa2+ea23,v=ea1a3+ρa2ρa2+ea23,w=rρ(a1a3)γ(ρa2+ea23) $ (1.5)

    where the trivial equilibrium $ (0, 0, 0) $ is called the extinction steady state, $ (0, 1, 0) $ is the predator-only steady state, and $ (u_*, v_*, w_*) $ is the coexistence steady state. We shall show that if $ a_1 > a_3 $, then the coexistence steady state is globally asymptotically stable with exponential convergence rate, provided that $ \xi $ and $ \chi $ are suitably small, while if $ a_1\leqslant a_3 $, the predator-only steady state is globally asymptotically stable with exponential or algebraic convergence rate when $ \xi $ and $ \chi $ are suitably small. To state our results, we denote

    $ Γ=4dρ(a1a3)K21(ea1a3+ρa2),Φ=2a2ρa23+e,Ψ=γηa23K21(ρa2+ea23)dρ2r2(a1a3) $ (1.6)

    and

    $ A=ξ24d,B=ea2a1,D=16ηγa1r2, $ (1.7)

    where $ K_1 $ is defined in (1.3). Then, the global stability result is stated in the following theorem.

    Theorem 1.2 (Global stability). Let the assumptions in Theorem 1.1 hold. Then, the following results hold.

    (1) Let $ a_1 > a_3 $. If $ \xi $ and $ \chi $ satisfy

    $ \xi^2 < \Gamma\Big(\Phi+\sqrt{\Phi^2-e^2} \Big) \ \mathit{\text{and}} \ \chi^2 < \Psi\max\limits_{y\in[a, b]}\frac{(\Gamma y-\xi^2)(-y^2+2\Phi y-e^2)}{y}, $

    where $ a = \max\big\{\frac{\xi^2}{\Gamma}, \Phi-\sqrt{\Phi^2-e^2}\big\}, b = \Phi+\sqrt{\Phi^2-e^2} $, then there exist some constants $ T_* $, $ C $, $ \alpha > 0 $ such that the solution $ (u, v, w) $ obtained in Theorem 1.1 satisfies for all $ t\geqslant T_* $

    $ \|u(\cdot, t)-u_*\|_{L^\infty(\Omega)}+\|v(\cdot, t)-v_*\|_{L^\infty(\Omega)}+\left\|w(\cdot, t)-w_*\right\|_{L^\infty(\Omega)}\leqslant Ce^{-\alpha t}. $

    (2) Let $ a_1\leqslant a_3 $, If $ \xi $ and $ \chi $ satisfy

    $ \xi^2 < \frac{4 d e a_2}{a_1}\quad\mathit{\text{and}}\quad\chi^2 < D\left(A+B-2\sqrt{AB}\right), $

    then there exist some constants $ T^* $, $ C $, $ \beta > 0 $ such that the solution $ (u, v, w) $ obtained in Theorem 1.1 satisfies, for all $ t\geqslant T^* $,

    $ \|u(\cdot, t)\|_{L^\infty(\Omega)}+\|v(\cdot, t)-1\|_{L^\infty(\Omega)}+\left\|w(\cdot, t)\right\|_{L^\infty(\Omega)}\leqslant {Ceβt if a1<a3,C(t+1)1 if a1=a3. $

    Remark 1.1. In the biological view, the relative sizes of $ a_1 $ and $ a_2 $ determine the coexistence of the system. The results indicated that a large $ \frac{a_1}{a_2} $ facilitates the coexistence of the species.

    The rest of this paper is organized as follows. In Section 2, we state the local existence of solutions to (1.1) with extensibility conditions. Then, we deduce some a priori estimates and prove Theorem 1.1 in Section 3. Finally, we show the global convergence to the constant steady states and prove Theorem 1.2 in Section 4.

    For convenience, in what follows we shall use $ C_i(i = 1, 2, \cdots) $ to denote a generic positive constant which may vary from line to line. For simplicity, we abbreviate $ \int_{0}^{t}\int_\Omega f(\cdot, s)dxds $ and $ \int_\Omega f(\cdot, t)dx $ as $ \int_{0}^{t}\int_\Omega f $ and $ \int_\Omega f $, respectively. The local existence and extensibility result of problem (1.1) can be directly established by the well-known Amman's theory for triangular parabolic systems (cf. [27,28]). Below, we shall present the local existence theorem without proof for brevity, and we refer to [21] for the proof in one dimension as a reference.

    Lemma 2.1 (Local existence and extensibility). Let $ \Omega\subset \mathbb{R}^n $ be a bounded domain with smooth boundary. The parameters $ d $, $ \eta $, $ \chi $, $ \xi $, $ a_1 $, $ a_2 $, $ a_3 $, e, $ \rho $, r, $ \gamma $ are positive. Then, for the initial data $ (u_0, v_0, w_0) $ satisfying $(1.2)$, there exists $ T_{max}\in(0, \infty] $ such that the system $(1.1)$ admits a unique classicalsolution $ (u, v, w) $ satisfying

    $ u, \ v, \ w\in C^0(\overline{\Omega}\times[0, T_{max}))\cap C^{2, 1}(\overline{\Omega}\times(0, T_{max})), $

    and $ u, v, w > 0 $ in $ \Omega\times(0, T_{max}) $. Moreover, we have

    $ \mathit{\text{either}}\ T_{max} = +\infty\ \mathit{\text{or}}\ \limsup\limits_{t\nearrow T_{max}}\left(\|u(\cdot, t)\|_{W^{1, \infty}(\Omega)}+\|v(\cdot, t)\|_{L^\infty(\Omega)}+\|w(\cdot, t)\|_{W^{1, \infty}(\Omega)}\right) = +\infty. $

    We recall some well-known results which will be used later frequently. The first one is an uniform Grönwall inequality [29].

    Lemma 2.2. Let $ T_{max} > 0 $, $ \tau\in(0, T_{max}) $. Suppose that $ c_1 $, $ c_2 $, $ y $ are three positive locally integrable functions on $ (0, T_{max}) $ such that $ y' $ is locally integrable on $ (0, T_{max}) $ and satisfies

    $ y'(t) \leqslant c_1(t)y(t)+c_2(t)\quad\mathit{\text{for all}}\ t\in(0, T_{max}). $

    If

    $ \int_{t}^{t+\tau} c_1\leqslant C_{1}, \quad\int_{t}^{t+\tau} c_2 \leqslant C_{2}, \ \ \int_{t}^{t+\tau} y \leqslant C_{3}\quad\mathit{\text{for all}}\ t\in[0, T_{max}-\tau), $

    where $ C_{i}(i = 1, 2, 3) $ are positive constants, then

    $ y(t)\leqslant\left(\frac{C_{3}}{\tau}+C_{2}\right) e^{C_{1}}\quad \mathit{\text{for all}}\ t\in[\tau, T_{max}). $

    Next, we recall a basic inequality [30].

    Lemma 2.3. Let $ p\in[1, \infty) $. Then, the following inequality holds:

    $ \int_\Omega|\nabla u|^{2(p+1)}\leqslant2\left(4 p^{2}+n\right)\|u\|_{L^\infty(\Omega)}^2\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2 $

    for any $ u\in C^{2}(\bar{\Omega}) $ satisfying $ \frac{\partial u}{\partial \nu} = 0 $ on $ \partial \Omega $, where $ D^{2}u $ denotes the Hessian of $ u $.

    The last one is a Gagliardo-Nirenberg type inequality shown in [31,Lemma 2.5].

    Lemma 2.4. Let $ \Omega $ be a bounded domain in $ \mathbb{R}^2 $ with smooth boundary. Then, for any $ \varphi\in W^{2, 2}(\Omega) $ satisfying $ \frac{\partial \varphi}{\partial \nu}|_{\partial\Omega} = 0 $, there exists a positive constant $ C $ depending only on $ \Omega $ such that

    $ φL4(Ω)C(Δφ12L2(Ω)φ12L2(Ω)+φL2(Ω)). $ (2.1)

    In this section, we establish the global boundedness of solutions to the system (1.1). To this end, we will proceed with several steps to derive a priori estimates for the solution of the system (1.1). The first one is the uniform-in-time $ L^\infty(\Omega) $ boundedness of $ u $.

    Lemma 3.1. Let $ (u, v, w) $ be the solution of $(1.1)$ and $ K_1 $ be as defined in $(1.3)$. Then, we have

    $ \|u\|_{L^{\infty}(\Omega)} \leqslant K_1\quad\mathit{\text{for all}}\ t \in\left(0, T_{max}\right). $

    Furthermore, there is a constant $ C > 0 $ such that for any $ 0 < \tau < \min\{T_{max}, 1\} $, it follows that

    $ \int_t^{t+\tau}|\nabla u|^2 \leq C\ \ \mathit{\text{for all}} \ \ t\in(0, T_{max}-\tau). $

    Proof. The result is a direct consequence of the maximum principle applied to the first equation in (1.1). Indeed, if we let $ \bar{u} = \max\left\{\frac{a_{1}}{a_{2}}, \left\|u_{0}\right\|_{L^\infty(\Omega)}\right\} $, then $ \bar{u} $ satisfies

    $ {ˉutdΔˉu+ˉu(a1a2ˉua3v),xΩ,t>0,ˉuν=0,xΩ,t>0,ˉu(x,0)u0(x),xΩ. $

    Apparently, the comparison principle of parabolic equations gives $ u\leqslant \bar{u} $ on $ \Omega \times\left(0, T_{\max }\right) $.

    Next, we multiply the first equation of (1.1) by $ u $ and integrate the result to get

    $ ddtΩu2+dΩ|u|2=a1Ωu2Ωu(a2u+a3v)a1K21|Ω|. $

    Then, the integration of the above inequality with respect to $ t $ over $ (t, t+\tau) $ completes the proof by noting that $ \int_\Omega u_0^2 $ is bounded.

    Having at hand the uniform-in-time $ L^\infty(\Omega) $ boundedness of $ u $, the a priori estimate of $ w $ follows immediately.

    Lemma 3.2. Let $ (u, v, w) $ be the solution of $(1.1)$. We can find a constant $ C > 0 $ satisfying

    $ \|w\|_{W^{1, \infty}(\Omega)} \leqslant C\quad\mathit{\text{for all}}\ t \in\left(0, T_{max}\right). $

    Proof. Noting the boundedness of $ \|u\|_{L^\infty(\Omega)} $ from Lemma 3.1, we get the desired result from the third equation of (1.1) and the regularity theorem [32,Lemma 1].

    Now, the a priori estimate of $ v $ can be obtained as below.

    Lemma 3.3. Let $ (u, v, w) $ be the solution of $(1.1)$. Then, there exists a constant $ C > 0 $ such that

    $ ΩvCfor all t(0,Tmax), $ (3.1)

    and

    $ t+τtΩv2Cfor all t(0,Tmaxτ), $ (3.2)

    where $ \tau $ is a constant such that $ 0 < \tau < \min\{T_{max}, 1\} $.

    Proof. Integrating the second equation of (1.1) over $ \Omega $ by parts, using Young's inequality and Lemma 3.1, we find some constant $ C_1 > 0 $ such that

    $ ddtΩv=ρΩvρΩv2+ea3Ωuv(ρ+ea3supt(0,Tmax)uL(Ω))ΩvρΩv2Ωvρ2Ωv2+C1for all t(0,Tmax). $ (3.3)

    Hence, (3.1) is obtained by the Grönwall inequality. Integrating (3.3) over $ (t, t+\tau) $, we get (3.2) immediately.

    Due to the estimates of $ u $ and $ v $ obtained in Lemmas 3.1 and 3.3 respectively, we have the following improved uniform-in-time $ L^2(\Omega) $ boundedness of $ \nabla u $ and the space-time $ L^2 $ boundedness of $ \Delta u $ when $ n = 2 $.

    Lemma 3.4. Let $ (u, v, w) $ be the solution of $(1.1)$. If $ n = 2 $, then we can find a constant $ C > 0 $ such that

    $ Ω|u|2Cfor all t(0,Tmax) $ (3.4)

    and

    $ t+τtΩ|Δu|2Cfor all t(0,Tmaxτ), $ (3.5)

    where $ \tau $ is defined in Lemma 3.3.

    Proof. Integrating the first equation of (1.1) by parts and using Lemma 3.1, we find a constant $ C_1 > 0 $ such that

    $ ddtΩ|u|2=2Ωuut=2ΩutΔu=2ΩΔu(dΔu+a1ua2u2a3uv)2dΩ|Δu|2+C1Ω(v+1)|Δu|for all t(0,Tmax). $ (3.6)

    The Gagliardo-Nirenberg inequality in Lemma 2.4, Young's inequality and Lemma 3.1 yield some constants $ C_2, C_3 > 0 $ satisfying

    $ Ω|u|2=u2L2(Ω)C2(ΔuL2(Ω)uL2(Ω)+u2L(Ω))d2Ω|Δu|2+C3 $

    and

    $ C_1\int_{\Omega}(v+1)|\Delta u|\leqslant\frac{d}{2} \int_{\Omega}|\Delta u|^{2}+C_3\int_{\Omega} v^{2}+C_3\quad\text{for all}\ t \in\left(0, T_{max}\right), $

    which along with (3.6) imply

    $ ddtΩ|u|2+Ω|u|2+dΩ|Δu|2C3Ωv2+2C3for all t(0,Tmax). $ (3.7)

    Then, applications of Lemma 2.2, 3.1 and 3.3 give (3.4). Finally, (3.5) can be obtained by integrating (3.7) over $ (t, t+\tau) $.

    Now, the uniform-in-time boundedness of $ v $ in $ L^2(\Omega) $ can be established when $ n = 2 $.

    Lemma 3.5. Let $ (u, v, w) $ be the solution of $(1.1)$. If $ n = 2 $, then there exists a constant $ C > 0 $ such that

    $ Ωv2Cfor all t(0,Tmax). $

    Proof. Multiplying the second equation of (1.1) by $ v $, integrating the result by parts and using Young's inequality, we have

    $ ddtΩv2+2Ω|v|2=2χΩvvw+2ξΩvuv+2ρΩv22ρΩv3+2ea3Ωuv2Ω|v|2+2χ2w2L(Ω)Ωv2+2ξ2Ωv2|u|2+2ρΩv22ρΩv3+2ea3uL(Ω)Ωv2, $

    which along with Lemma 3.1 and Lemma 3.2 gives some constant $ C_1 > 0 $ such that

    $ ddtΩv2+Ω|v|22ξ2Ωv2|u|2+C1Ωv22ρΩv3for all t(0,Tmax). $ (3.8)

    Using Lemmas 3.1 and 3.3, Hölder's inequality, Lemma 2.4 and Young's inequality, we find some constants $ C_2, C_3, C_4 > 0 $ such that

    $ 2ξΩv2|u|22ξv2L4(Ω)u2L4(Ω)C2(v12L2(Ω)v12L2(Ω)+vL2(Ω))2(Δu12L2(Ω)u12L(Ω)+uL(Ω))2C3(vL2(Ω)vL2(Ω)ΔuL2(Ω)+vL2(Ω)vL2(Ω)+ΔuL2(Ω)v2L2(Ω)+v2L2(Ω))v2L2(Ω)+C4(1+Δu2L2(Ω))v2L2(Ω)for all t(0,Tmax). $ (3.9)

    Furthermore, Young's inequality yields some constant $ C_5 > 0 $ such that

    $ C1Ωv22ρΩv3C5for all t(0,Tmax). $ (3.10)

    Substituting (3.9) and (3.10) into (3.8), we get

    $ \frac{d}{dt}\int_{\Omega}v^2\leqslant C_4\left(1+\|\Delta u\|^2_{L^2(\Omega)}\right)\|v\|_{L^2(\Omega)}^2+C_5\quad\text{for all}\ t \in\left(0, T_{max}\right), $

    which alongside Lemma 2.2, Lemma 3.3 and Lemma 3.4 completes the proof.

    To get the global existence of solutions in any dimensions, we derive the following functional inequality which gives an a priori estimate on $ \nabla u $.

    Lemma 3.6. Let $ (u, v, w) $ be the solution of $(1.1)$ and $ q\geqslant2 $. If $ n\geqslant1 $, then there exists a constant $ C > 0 $ such that

    $ ddtΩ|u|2q+dqΩ|u|2(q1)|D2u|2q(n+2(q1))K22dΩ(v2+1)|u|2(q1)+Cfor all t(0,Tmax), $

    where $ K_2 $ is defined in (1.3).

    Proof. From the first equation of (1.1) and the fact $ 2\nabla u\cdot\nabla\Delta u = \Delta|\nabla u|^2-2|D^2u|^2 $, it follows that

    $ ddtΩ|u|2q=2qΩ|u|2(q1)uut=2qΩ|u|2(q1)u(dΔu+a1ua2u2a3uv)=dqΩ|u|2(q1)Δ|u|22dqΩ|u|2(q1)|D2u|2+2qΩ|u|2(q1)u(a1ua2u2a3uv) $

    which implies

    $ ddtΩ|u|2q+2dqΩ|u|2(q1)|D2u|2=dqΩ|u|2(q1)Δ|u|2+2qΩ|u|2(q1)u(a1ua2u2a3uv)=:I1+I2for all t(0,Tmax). $ (3.11)

    Now, we estimate the right hand side of (3.11). Choosing $ s\in(0, \frac{1}{2}) $ and

    $ \theta = \frac{\frac{1}{2}-\frac{s+\frac{1}{2}}{n}-q}{\frac{1}{2}-\frac{1}{n}-q}\in(0, 1), $

    we get

    $ \frac{1}{2}-\frac{s+\frac{1}{2}}{n} = \theta\left(\frac{1}{2}-\frac{1}{n}\right)+(1-\theta)q, $

    which, along with the Gagliardo-Nirenberg inequality, Young's inequality and the embedding

    $ W^{s+\frac{1}{2}, 2}(\Omega)\subset W^{s, 2}(\partial\Omega)\subset L^{2}(\partial\Omega), $

    gives some constants $ C_1 $, $ C_2 $, $ C_3 $, $ C_4 > 0 $ such that

    $ Ω|u|2(q1)|u|2νC1Ω|u|2q=C1|u|q2L2(Ω)C2|u|q2Ws+12,2(Ω)C3|u|q2θL2(Ω)|u|q2(1θ)L1q(Ω)+C3|u|q2L1q(Ω)2(q1)q2|u|q2L2(Ω)+C4for all t(0,Tmax). $

    Therefore, it holds that

    $ I1=dqΩ|u|2(q1)|u|2νdqΩ|u|2(q1)|u|22d(q1)qΩ||u|q|2+C4dq4d(q1)qΩ||u|q|22d(q1)qΩ||u|q|2+C4dqfor all t(0,Tmax). $

    Owning to the fact $ |\Delta u|\leqslant \sqrt{n}|D^2u| $, Young's inequality and Lemma 3.1, we have

    $ I2=2q(q1)Ω(a1ua2u2a3uv)|u|2(q2)|u|2u2qΩ(a1ua2u2a3uv)|u|2(q1)Δu2q(q1)K2Ω(v+1)|u|2(q2)||u|2||u|+2qnK2Ω(v+1)|u|2(q1)|D2u|qd(q1)2Ω|u|2(q2)||u|2|2+2q(q1)K22dΩ(v2+1)|u|2(q1)+dqΩ|u|2(q1)|D2u|2+qnK22dΩ(v2+1)|u|2(q1)=2d(q1)qΩ||u|q|2+dqΩ|u|2(q1)|D2u|2+q(n+2(q1))K22dΩ(v2+1)|u|2(q1)for all t(0,Tmax), $

    where $ K_2 $ is defined in (1.3). Hence, substituting the estimates $ I_1 $ and $ I_2 $ into (3.11), we finish the proof of the lemma.

    Now, we show the following functional inequality to derive the a priori estimate on $ v $ in any dimensions.

    Lemma 3.7. Let $ (u, v, w) $ be the solution of $(1.1)$ and $ q\geqslant2 $. If $ n\geqslant1 $, we can find a constant $ C > 0 $ such that

    $ \frac{d}{dt}\int_{\Omega} v^{q}+\frac{2(q-1)}{q}\int_{\Omega}\left|\nabla v^{\frac{q}{2}}\right|^2+\rho q\int_{\Omega} v^{q+1}\leqslant q(q-1)\xi^2\int_{\Omega} v^{q}|\nabla u|^2+C\int_{\Omega} v^{q} $

    for all $ t\in(0, T_{max}) $.

    Proof. Utilizing the second equation of (1.1) and integration by parts, we get

    $ ddtΩvq=qΩvq1vt=qΩvq1((v+χvwξvu)+v(ρ(1v)+ea3u))=q(q1)Ωvq2|v|2χq(q1)Ωvq1wv+ξq(q1)Ωvq1uv+ρqΩvqρqΩvq+1+ea3qΩuvq. $ (3.12)

    Now, we estimate the right hand side of (3.12). An application of Young's inequality and Lemma 3.2 yields some constant $ C_1 > 0 $ such that

    $ χq(q1)Ωvq1wvχq(q1)supt(0,Tmax)wL(Ω)Ωvq1|v|q(q1)4Ωvq2|v|2+C1Ωvq $

    and

    $ \xi q(q-1) \int_{\Omega} v^{q-1} \nabla u \cdot \nabla v \leqslant \frac{q(q-1)}{4} \int_{\Omega} v^{q-2}|\nabla v|^{2}+q(q-1)\xi^2\int_{\Omega} v^{q}|\nabla u|^2, $

    which along with (3.12), Lemma 3.1 and the fact

    $ v^{q-2}|\nabla v|^2 = \frac{4}{q^2}\left|\nabla v^{\frac{q}{2}}\right|^2 $

    gives a constant $ C_2 > 0 $ such that

    $ ddtΩvq+2(q1)qΩ|vq2|2q(q1)ξ2Ωvq|u|2+(ρq+C1)ΩvqρqΩvq+1+ea3qΩuvqq(q1)ξ2Ωvq|u|2ρqΩvq+1+C2Ωvqfor all t(0,Tmax). $

    Hence, we finish the proof of the lemma.

    Combining Lemmas 3.6 and 3.7, we have the following inequality which can help us to achieve the global existence of solutions in any dimensions.

    Lemma 3.8. Let $ (u, v, w) $ be the solution of $(1.1)$ and $ p\geqslant2 $. If $ n\geqslant1 $, we can find a constant $ C > 0 $ such that

    $ ddt(Ω|u|2p+Ωvp)+2(p1)pΩ|vp2|2+Ω|u|2p+Ωvp(K3(p)ρp2)Ωvp+1+Cfor all t(0,Tmax), $

    where $ K_3(p) $ is defined in (1.4).

    Proof. Combining Lemmas 3.6 and 3.7, we see for any $ p = q\geqslant2 $ there exists a constant $ C_1 > 0 $ such that for all $ t \in\left(0, T_{max}\right) $

    $ ddt(Ω|u|2p+Ωvp)+2(p1)pΩ|vp2|2+dpΩ|u|2(p1)|D2u|2+ρpΩvp+1p(n+2(p1))K22dΩv2|u|2(p1)+p(p1)ξ2Ωvp|u|2+C1Ω|u|2(p1)+C1Ωvp+C1. $ (3.13)

    Now, we estimate the right hand side of the above inequality. Indeed, owing to Lemma 2.3 and Young's inequality, for all $ t \in\left(0, T_{max}\right) $, we have

    $ p(n+2(p1))K22dΩv2|u|2(p1)dp8(4p2+n)u2L(Ω)Ω|u|2(p+1)+2p+1(dp(p+1)8(p1)(4p2+n)u2L(Ω))p12(p(n+2(p1))K22d)p+12Ωvp+1dp4Ω|u|2(p1)|D2u|2+23p12pdp(n+2(p1)K22p+1)p+12((p1)(4p2+n)K21)p12Ωvp+1 $

    and

    $ p(p1)ξ2Ωvp|u|2dp8(4p2+n)u2L(Ω)Ω|u|2(p+1)+pp+1(dp(p+1)8(4p2+n)u2L(Ω))1p(p(p1)ξ2)p+1pΩvp+1dp4Ω|u|2(p1)|D2u|2+23pp2d1p((p1)ξ2p+1)p+1p((4p2+n)K21)1pΩvp+1, $

    where $ K_1 $ and $ K_2 $ are defined in (1.3). Similarly, we can find a constant $ C_2 > 0 $ such that

    $ C1Ω|u|2(p1)dp8(4p2+n)u2L(Ω)Ω|u|2(p+1)+C2dp4Ω|u|2(p1)|D2u|2+C2for all t(0,Tmax). $

    Substituting the above estimates into (3.13), we get

    $ ddt(Ω|u|2p+Ωvp)+2(p1)pΩ|vp2|2+dp4Ω|u|2(p1)|D2u|2+ρpΩvp+1K3(p)Ωvp+1+C1Ωvp+C1+C2for all t(0,Tmax), $ (3.14)

    where $ K_3(p) $ is given in (1.4). Furthermore, we can use Young's inequality and Lemma 2.3 to get a constant $ C_3 > 0 $ such that

    $ (C_1+1)\int_{\Omega} v^{p}\leqslant\frac{\rho p}{2}\int_{\Omega} v^{p+1}+C_3, $

    and

    $ Ω|u|2pdp8(4p2+n)u2L(Ω)Ω|u|2(p+1)+C3dp4Ω|u|2(p1)|D2u|2+C3for all t(0,Tmax), $

    which together with (3.14) finishes the proof.

    Next, we shall deduce a criterion of global boundedness of solutions for the system (1.1) inspired by an idea of [33].

    Lemma 3.9. Let $ n\geqslant1 $. If there exist $ M > 0 $ and $ p_0 > \frac{n}{2} $ such that

    $ Ωvp0Mfor all t(0,Tmax), $ (3.15)

    then $ T_{max} = +\infty $. Moreover, there exists $ C > 0 $ such that

    $ \|u(\cdot, t)\|_{W^{1, \infty}(\Omega)}+\|v(\cdot, t)\|_{L^{\infty}(\Omega)}+\|w(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leqslant C\quad\mathit{\text{for all}}\ t > 0. $

    Proof. We divide the proof into two steps.

    Step 1: We claim that there exists a constant $ C_1 > 0 $ such that

    $ Ωv2p0C1for all t(0,Tmax). $

    Indeed, due to Lemma 3.8, for any $ p = 2p_0 $, there exists a constant $ C_2 > 0 $ such that

    $ ddt(Ω|u|4p0+Ωv2p0)+2p01p0Ω|vp0|2+Ω|u|4p0+Ωv2p0(K3(2p0)ρp0)Ωv2p0+1+C2for all t(0,Tmax). $ (3.16)

    Let

    $ \theta = \frac{n}{n+2} \frac{2p_0+2}{2p_0+1} \in(0, 1). $

    Then, $ \frac{2p_0+1}{2p_0}\theta < 1 $ due to $ p_0 > \frac{n}{2} $. By the Gagliardo-Nirenberg inequality, Young's inequality and (3.15), we can find some constants $ C_3, C_4 > 0 $ such that

    $ (K3(2p0)ρp0)Ωv2p0+1=(K3(2p0)ρp0)vp02p0+1p0L2p0+1p0(Ω)C3(vp02p0+1p0(1θ)L1(Ω)vp02p0+1p0θL2(Ω)+vp02p0+1p0L1(Ω))C3(M2p0+1p0(1θ)vp02p0+1p0θL2(Ω)+M2p0+1p0)2p01p0Ω|vp0|2+C4for all t(0,Tmax), $

    which along with (3.16) implies

    $ \frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{4p_0}+\int_{\Omega}v^{2p_0}\right)+\int_{\Omega}|\nabla u|^{4p_0}+\int_{\Omega} v^{2p_0} \leqslant C_2+C_4\quad\text{for all}\ t\in(0, T_{max}). $

    Therefore, the claim follows from the Grönwall inequality applied to the above inequality.

    Step 2: Thanks to the regularity theorem [32,Lemma 1], we can find a constant $ C_5 > 0 $ such that $ \|\nabla u\|_{L^\infty(\Omega)}\leqslant C_5 $ due to $ 2p_0 > n $. With (3.12) and Lemmas 3.1 and 3.2, we get a constant $ C_6 > 0 $ such that for any $ p\geqslant2 $

    $ ddtΩvp+p(p1)Ωvp2|v|2p(p1)(C6χ+C5ξ)Ωvp1|v|+p(ρ+ea3K1)Ωvp. $ (3.17)

    Thanks to Young's inequality, we find a constant $ C_7 > 0 $ such that

    $ p(p1)(C6χ+C5ξ)Ωvp1|v|p(p1)2Ωvp2|v|2+C7p(p1)Ωvp, $

    which together with (3.17) implies

    $ ddtΩvp+p(p1)Ωvp+2(p1)pΩ|vp2|2p(p1)C8Ωvp, $ (3.18)

    with $ C_8 = C_7+\rho+ea_3K_1+1 $. Applying $ 1+p^n\leqslant(1+p)^n $ and the following inequality [34]

    $ \|f\|_{L^2}^2\leqslant\varepsilon\|\nabla f\|_{L^2}^2+C_9(1+\varepsilon^{-\frac{n}{2}})\|f\|_{L^1}^2, $

    with $ f = v^{\frac{p}{2}} $ and $ \varepsilon = \frac{2}{p^2C_8} $, we find a constant $ C_{10} > 0 $ such that

    $ p(p1)C8Ωup2(p1)pΩ|up2|2+C10p(p1)(1+pn)(Ωup2)2. $ (3.19)

    Substituting (3.19) into (3.18), we have

    $ ddtΩup+p(p1)ΩupC10p(p1)(1+p)n(Ωup2)2. $

    Then, employing the standard Moser iteration in [35] or a similar argument as in [34], we can prove that there exists a constant $ C_{11} > 0 $ such that

    $ vL(Ω)C11for all t(0,Tmax). $

    Thus, with the help of Lemma 3.2, we finish the proof.

    Now, utilizing the criterion in Lemma 3.9, we prove the global existence and boundedness of solutions for the system (1.1).

    Proof of Theorem 1.1. If $ n\leqslant2 $, then the conclusion of the theorem can be obtained by Lemmas 3.3, 3.5 and 3.9. If $ n\geqslant3 $ and

    $ \rho\geqslant \frac{2K_3\left(\left[\frac{n}{2}\right]+1\right)}{\left[\frac{n}{2}\right]+1}, $

    then according to Lemma 3.8, by fixing $ p = [\frac{n}{2}]+1 $ we can find a constant $ C_1 > 0 $ such that

    $ \frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{2\left[\frac{n}{2}\right]+2}+\int_{\Omega}v^{\left[\frac{n}{2}\right]+1}\right)+\int_{\Omega}|\nabla u|^{2\left[\frac{n}{2}\right]+2}+\int_{\Omega} v^{\left[\frac{n}{2}\right]+1} \leqslant C_1\quad\text{for all}\ t\in(0, T_{max}), $

    which along with the Grönwall inequality gives a constant $ C_2 > 0 $,

    $ \int_{\Omega} v^{\left[\frac{n}{2}\right]+1} \leqslant C_2\quad\text{for all}\ t\in(0, T_{max}). $

    Together with Lemma 3.9, we finish the proof by Lemma 2.1.

    In this section, we will employ suitable Lyapunov functionals to study the large-time behavior of $ u $, $ v $ and $ w $. We first improve the regularity of the solution.

    Lemma 4.1. There exist constants $ \theta_1, \theta_2, \theta_3\in(0, 1) $ and $ C > 0 $ such that

    $ \|u\|_{C^{2+\theta_1, 1+\frac{\theta_1}{2}}(\overline{\Omega}\times[t, t+1])}+\|v\|_{C^{2+\theta_2, 1+\frac{\theta_2}{2}}(\overline{\Omega}\times[t, t+1])}+\|w\|_{C^{2+\theta_3, 1+\frac{\theta_3}{2}}(\overline{\Omega}\times[t, t+1])}\leqslant C\quad\mathit{\text{for all}}\ t > 1. $

    In particular, one can find $ C > 0 $ such that

    $ \|\nabla u\|_{L^\infty(\Omega)}+\|\nabla v\|_{L^\infty(\Omega)}+\|\nabla w\|_{L^\infty(\Omega)}\leqslant C\quad\mathit{\text{for all}}\ t > 1. $

    Proof. The conclusion is a consequence of the regularity of parabolic equations in [36].

    We split our analysis into two cases: $ a_1 > a_3 $ and $ a_1\leqslant a_3 $.

    We know that there are four homogeneous equilibria $ (0, 0, 0) $, $ (0, 1, 0) $, $ \left(\frac{a_1}{a_2}, 0, \frac{ra_1}{\gamma a_2}\right) $ and $ (u_*, v_*, w_*) $ when $ a_1 > a_3 $, where $ u_*, v_* $ and $ w_* $ are defined in (1.5). In this case, we shall prove the coexistence steady state $ (u_*, v_*, w_*) $ is globally exponentially stable under certain conditions. Define an energy functional for (1.1) as follows:

    $ \mathcal{F}(t) = \varepsilon_1\int_\Omega\left(u-u_*-u_*\ln\frac{u}{u_*}\right)+\int_\Omega\left(v-v_*-v_*\ln\frac{v}{v_*}\right)+\frac{\varepsilon_2}{2}\int_\Omega\left(w-w_*\right)^2, $

    where $ \varepsilon_1 $ and $ \varepsilon_2 $ are to be determined below.

    Proof of Theorem 1.2–(1). We complete the proof in four steps.

    Step 1: The parameters $ \varepsilon_1 $ and $ \varepsilon_2 $ can be chosen in the following way. First, we recall from (1.5) and (1.6) that

    $ Γ=4duK21v,Φ=2a2ρa23+e,Ψ=γηa23K21dρ2r2u. $ (4.1)

    Let

    $ f(y) = \frac{\Psi(\Gamma y-\xi^2)(-y^2+2\Phi y-e^2)}{y}, \quad y > 0. $

    It is clear that $ f\in C^0((0, +\infty)) $. Then, if

    $ \frac{\xi^2}{\Gamma} < \Phi+\sqrt{\Phi^2-e^2}, $

    the following holds:

    $ ξ2K21v4du<2a2ρa23+e+2a3a2ρ(a2ρa23+e). $ (4.2)

    Under (4.2), we let $ a = \max\left\{\frac{\xi^2}{\Gamma}, \Phi-\sqrt{\Phi^2-e^2}\right\} $ and $ b = \Phi+\sqrt{\Phi^2-e^2} $ with $ a < b $. Then, $ f(y) $ is continuous on $ [a, b] $ with $ f(a) = f(b) = 0 $, and consequently $ f(y) $ must attain the maximum at some point, say $ \varepsilon_1 $, in $ (a, b) $, namely $ f(\varepsilon_1) = \max \limits_{y\in [a, b]} f(y) $. Then, $ a < \varepsilon_1 < b $, or equivalently (see (4.1))

    $ max{ξ2u2v4du,2a2ρa23+e2a3a2ρ(a2ρa23+e)}<ε1<2a2ρa23+e+2a3a2ρ(a2ρa23+e). $ (4.3)

    Next, we assume $ \chi > 0 $ is suitably small such that

    $ χ2<f(ε1)=γηa23K21dρr2uε1(4duε1vK21ξ2)(ε21+2(2a2ρa23+e)ε1e2)=4γηdρr2uvε1(4duε1ξ2vK21)(a2ρε1a23(ε1e)24), $

    which implies

    $ \frac{d\chi^2u_*v_*^2\varepsilon_1}{\eta\left(4du_*v_*\varepsilon_1-\xi^2v_*^2K_1^2\right)} < \frac{4\gamma}{\rho r^2}\left(a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4}\right). $

    Hence, there exists a constant $ \varepsilon_2 > 0 $ such that

    $ dχ2uv2ε1η(4duvε1ξ2v2K21)<ε2<4γρr2(a2ρε1a23(ε1e)24) $

    which along with Lemma 3.1 yields

    $ dχ2uv2ε1η(4duvε1ξ2v2u2)<ε2<4γρr2(a2ρε1a23(ε1e)24). $ (4.4)

    Step 2: We claim

    $ \|u-u_*\|_{L^{\infty}(\Omega)}+\|v-v_*\|_{L^{\infty}(\Omega)}+\|w-w_*\|_{L^{\infty}(\Omega)} \rightarrow0\quad\text{as}\ t\rightarrow +\infty. $

    Indeed, using the equations in system (1.1) along with integration by parts, we have

    $ ddtΩ(uuulnuu)=Ωuuuut=duΩ|u|2u2+Ω(uu)(a1a2ua3v)=duΩ|u|2u2a2Ω(uu)2a3Ω(uu)(vv). $

    Similarly, we obtain

    $ ddtΩ(vvvlnvv)=Ωvvvvt=vΩ|v|2v2χvΩvwv+ξvΩuvv+Ω(vv)(ρρv+ea3u)=vΩ|v|2v2χvΩvwv+ξvΩuvvρΩ(vv)2+ea3Ω(uu)(vv) $

    and

    $ ddtΩ(ww)2=2Ω(ww)wt=2Ω(ww)(ηΔw+ruγw)=2ηΩ|w|2+2rΩ(uu)(ww)2γΩ(ww)2for all t>0. $

    Then, it follows that

    $ ddtF(t)=duε1Ω|u|2u2vΩ|v|2v2ηε2Ω|w|2χvΩvwv+ξvΩuvva2ε1Ω(uu)2ρΩ(vv)2γε2Ω(ww)2a3(ε1e)Ω(uu)(vv)+rε2Ω(uu)(ww)=:XTSXYTTY, $

    where $ X = (\nabla u, \nabla v, \nabla w) $, $ Y = (u-u_*, v-v_*, w-w_*) $, and

    $ S = \left[duε1u2ξv2v0ξv2vvv2χv2v0χv2vηε2\right], \quad T = \left[a2ε1a3(ε1e)2rε22a3(ε1e)2ρ0rε220γε2\right]. $

    Note that (4.3) yields

    $ \frac{du_*v_*\varepsilon_1}{u^2v^2}-\frac{\xi^2v_*^2}{4v^2} > \frac{v_*^2}{4v^2}\bigg(\frac{4d u_*\varepsilon}{K_1^2}-\xi^2\bigg) > 0, $

    and (4.4) gives

    $ \frac{\eta du_*v_*\varepsilon_1\varepsilon_2}{u^2v^2}-\frac{d\chi^2u_*v_*^2\varepsilon_1}{4u^2v^2}-\frac{\eta \xi^2v_*^2\varepsilon_2}{4v^2} > 0. $

    The above results indicate that matrix $ S $ is positive definite. Using (4.3) and (4.4) again, we observe that

    $ a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4} > 0, $

    and

    $ a_2\rho\gamma\varepsilon_1\varepsilon_2-\frac{\rho r^2\varepsilon_2^2}{4}-\frac{a_3^2\gamma(\varepsilon_1-e)^2\varepsilon_2}{4} > 0, $

    which imply that matrix $ T $ is positive definite. Therefore, one can choose a constant $ C_1 > 0 $ such that

    $ ddtF(t)C1(Ω(uu)2+Ω(vv)2+Ω(ww)2)for all t>0. $ (4.5)

    Integrating the above inequality with respect to time, we get a constant $ C_2 > 0 $ satisfying

    $ \int_{1}^{+\infty}\int_\Omega(u-u_*)^2+\int_{1}^{+\infty}\int_\Omega(v-v_*)^2+\int_{1}^{+\infty}\int_\Omega(w-w_*)^2\leqslant C_2, $

    which together with the uniform continuity of $ u, v $ and $ w $ due to Lemma 4.1 yields

    $ Ω(uu)2+Ω(vv)2+Ω(ww)20,as t+. $ (4.6)

    By the Gagliardo-Nirenberg inequality, we can find a constant $ C_3 > 0 $ such that

    $ uuL(Ω)C3uunn+2W1,(Ω)uu2n+2L2(Ω), $ (4.7)
    $ vvL(Ω)C3vvnn+2W1,(Ω)vv2n+2L2(Ω) $ (4.8)

    and

    $ wwL(Ω)C3wwnn+2W1,(Ω)ww2n+2L2(Ω)for all t>1, $ (4.9)

    which along with (4.6) and Lemma 4.1 prove the claim.

    Step 3: From the L'Hôpital rule, it holds that for any $ s_0 > 0 $

    $ \lim\limits_{s\rightarrow s_0}\frac{s-s_0-s_0\ln\frac{s}{s_0}}{(s-s_0)^2} = \lim\limits_{s\rightarrow s_0}\frac{1-\frac{s_0}{s}}{2(s-s_0)} = \lim\limits_{s\rightarrow s_0}\frac{1}{2s} = \frac{1}{2s_0}, $

    which gives a constant $ \eta > 0 $ such that for all $ |s-s_0|\leqslant\eta $

    $ 14s0(ss0)2ss0s0lnss01s0(ss0)2. $ (4.10)

    By (4.6), there exists $ T_1 > 1 $ such that

    $ uuL(Ω)+vvL(Ω)+wwL(Ω)ηfor all tT1. $

    Therefore, by (4.10), we get

    $ 14uΩ(uu)2Ω(uuulnuu)1uΩ(uu)2for all tT1 $ (4.11)

    and

    $ 14vΩ(vv)2Ω(vvvlnvv)1vΩ(vv)2for all tT1. $ (4.12)

    Step 4: From (4.11) and (4.12), it follows that

    $ \mathcal{F}(t)\leqslant\max\left\{\frac{\varepsilon_1}{u_*}, \frac{1}{v_*}, \frac{\varepsilon_2}{2}\right\}\left(\int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\right), $

    which alongside (4.5) yields a constant $ C_4 > 0 $ such that

    $ \frac d{dt}\mathcal{F}(t)\leqslant-C_4\mathcal{F}(t)\quad\text{for all}\ t\geqslant T_1. $

    This immediately gives a constant $ C_5 > 0 $ such that

    $ F(t)C5eC4tfor all tT1. $

    Hence, utilizing (4.11) and (4.12) again, one obtains a constant $ C_6 > 0 $ such that

    $ Ω(uu)2+Ω(vv)2+Ω(ww)2C6eC4tfor all tT1. $

    Finally, by (4.7)–(4.9) and Lemma 4.1, we get the decay rates of $ \|u-u_*\|_{L^\infty(\Omega)} $, $ \|v-v_*\|_{L^\infty(\Omega)} $ and $ \|w-w_*\|_{L^\infty(\Omega)} $, as claimed in Theorem 1.2–(1).

    In this case, there are three homogeneous equilibria $ (0, 0, 0) $, $ (0, 1, 0) $ and $ \left(\frac{a_1}{a_2}, 0, \frac{ra_1}{\gamma a_2}\right) $, and we shall show that the steady state $ (0, 1, 0) $ is global asymptotically stable, where the convergence rate is exponential if $ a_1 < a_3 $ and algebraic if $ a_1 = a_3 $. Define an energy functional for (1.1) as follows:

    $ G(t) = e\int_\Omega u+\frac{\zeta_1}{2}\int_\Omega u^2+\int_\Omega\left(v-1-\ln v\right)+\frac{\zeta_2}{2}\int_\Omega w^2, $

    where $ \zeta_1 $ and $ \zeta_2 $ will be determined below.

    Proof of Theorem 1.2–(2). We divide the proof into five steps.

    Step 1: We shall choose the appropriate parameters $ \zeta_1 $ and $ \zeta_2 $. By the definitions of $ A $ and $ B $ in (1.7), since $ A < B $, we have

    $ (ξ24d)2<ξ2ea24da1<(ea2a1)2. $ (4.13)

    Let

    $ g(y) = \frac{16\eta\gamma}{dr^2}\frac{(dy-\frac{\xi^2}{4})(ea_2-a_1y)}{y}, \quad \frac{\xi^2}{4d} < y < \frac{ea_2}{a_1}. $

    Then, $ g\in C^1\left(\left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right)\right) $, and $ g(y) > 0 $ in $ \left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right) $. We further observe that

    $ g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right) = D\left(A+B-2\sqrt{AB}\right) $

    which along with $ \chi^2 < D\left(A+B-2\sqrt{AB}\right) $ implies

    $ \chi^2 < g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right). $

    By the definition of $ g $, one has

    $ g'(y_0) = \frac{16\eta\gamma}{dr^2}\left(-da_1+\frac{\xi^2ea_2}{4y_0^2}\right) = 0, $

    which alongside (4.13) gives $ y_0 = \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\in\left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right) $. Thus, $ g(y) $ is increasing in $ \left(\frac{\xi^2}{4d}, \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right) $ and decreasing in $ \left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}, \frac{ea_2}{a_1}\right) $. We can find a constant $ \zeta_1 > 0 $ such that

    $ ξ2ea2da1<ζ1<ea2a1 $ (4.14)

    and

    $ 0 = g\left(\frac{ea_2}{a_1}\right) < \chi^2 < g(\zeta_1) < g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right). $

    With the definition of $ g $, we get

    $ \frac{d\chi^2\zeta_1}{4\eta(d\zeta_1-\frac{\xi^2}{4})} < \frac{4\gamma}{r^2}(ea_2-a_1\zeta_1), $

    which implies that there exists $ \zeta_2 > 0 $ such that

    $ dχ2ζ14η(dζ1ξ24)<ζ2<4γr2(ea2a1ζ1). $ (4.15)

    One can verify that

    $ ηdζ1ζ2dχ24ζ1ηξ24ζ2>0, $ (4.16)

    and

    $ (ea2a1ζ1)ργζ2ρr24ζ22>0. $ (4.17)

    Thanks to (4.13) and (4.14), one obtains

    $ ξ24d<ζ1<ea2a1. $ (4.18)

    Step 2: We claim

    $ uL(Ω)+v1L(Ω)+wL(Ω)0as t+. $ (4.19)

    Indeed, if $ (u, v, w) $ is the solution of system (1.1), then we get

    $ ddtΩu=a1Ωua2Ωu2a3Ωuv, $ (4.20)
    $ ddtΩu2=2Ωuut=2dΩ|u|2+2a1Ωu22a2Ωu32a3Ωu2v, $ (4.21)
    $ ddtΩ(v1lnv)=Ωv1vvt=Ω|v|2v2χΩvwv+ξΩuvv+Ω(v1)(ρρv+ea3u)=Ω|v|2v2χΩvwv+ξΩuvvρΩ(v1)2+ea3Ωuvea3Ωu $ (4.22)

    and

    $ ddtΩw2=2Ωwwt=2ηΩ|w|2+2rΩuw2γΩw2for all t>0. $ (4.23)

    Then, combining (4.20), (4.21), (4.22) and (4.23), we have from the definition of $ G(t) $ that

    $ ddtG(t)dζ1Ω|u|2Ω|v|2v2ηζ2Ω|w|2χΩvwv+ξΩuvv+e(a1a3)Ωu(ea2a1ζ1)Ωu2ρΩ(v1)2γζ2Ωw2+rζ2Ωuw=:XTPXYTQY+e(a1a3)Ωu, $ (4.24)

    where $ X = (\nabla u, \nabla v, \nabla w) $, $ Y = (u, v-1, w) $,

    $ P = \left[dζ1ξ2v0ξ2v1v2χ2v0χ2vηζ2\right]\quad\text{and}\quad Q = \left[ea2a1ζ10rζ220ρ0rζ220γζ2\right]. $

    It can be checked that (4.16) and (4.18) ensure that the matrix $ P $ is positive definite while (4.17) and (4.18) guarantee that the matrix $ Q $ is positive definite. Thus, there is a constant $ C_1 > 0 $ such that if $ a_1 < a_3 $, then

    $ ddtG(t)C1(Ωu+Ωu2+Ω(v1)2+Ωw2)for all t>0, $ (4.25)

    and if $ a_1 = a_3 $, then

    $ ddtG(t)C1(Ωu2+Ω(v1)2+Ωw2)for all t>0. $ (4.26)

    Integrating the above inequalities with respect to time, we find a constant $ C_2 > 0 $ satisfying

    $ \int_1^{+\infty}\int_\Omega u^2+\int_1^{+\infty}\int_\Omega(v-1)^2+\int_1^{+\infty}\int_\Omega w^2\leqslant C_2, $

    which together with the uniform continuity of $ u, v $ and $ w $ due to Lemma 4.1 yields

    $ Ωu2+Ω(v1)2+Ωw20,as t+. $ (4.27)

    Thus, (4.19) is obtained by the Gagliardo-Nirenberg inequality and Lemma 4.1.

    Step 3: By the L'Hôpital rule, we get

    $ \lim\limits_{s\rightarrow 1}\frac{s-1-\ln s}{(s-1)^2} = \lim\limits_{s\rightarrow 1}\frac{1-\frac{1}{s}}{2(s-1)} = \lim\limits_{s\rightarrow 1}\frac{1}{2s} = \frac{1}{2}, $

    which gives a constant $ \varepsilon > 0 $ such that

    $ 14(s1)2s1lns(s1)2  for all  |s1|ε. $ (4.28)

    By (4.19), there exists $ T_1 > 0 $ such that

    $ uL(Ω)+v1L(Ω)+wL(Ω)εfor all tT1. $ (4.29)

    Therefore, it follows from (4.28) that

    $ 14Ω(v1)2Ω(v1lnv)Ω(v1)2for all tT1. $ (4.30)

    Step 4: If $ a_1 < a_3 $, from the definition of $ G(t) $ and (4.30), one has

    $ G(t)\leqslant\max\left\{e, \frac{\zeta_1}{2}, \frac{\zeta_2}{2}, 1\right\}\left(\int_\Omega u+\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right), $

    which along with (4.25) yields a constant $ C_3 > 0 $ such that

    $ \frac d{dt}G(t)\leqslant-C_3G(t)\quad\text{for all}\ t\geqslant T_1. $

    This gives a constant $ C_4 > 0 $ such that

    $ G(t)C4eC3tfor all tT1. $

    Hence, utilizing (4.30) again, we find a constant $ C_5 > 0 $ such that

    $ Ωu2+Ω(v1)2+Ωw2C5eC3tfor all tT1. $

    Then, by the Gagliardo-Nirenberg inequality and Lemma 4.1, we get the exponential convergence for $ \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} $.

    Step 5: If $ a_1 = a_3 $, we use (4.29), (4.30) and Young's inequality to find a constant $ C_6 > 0 $:

    $ G2(t)C6(Ωu+Ωu2+Ω(v1)2+Ωw2)2C6(ε+1)2(Ωu+Ω(v1)+Ωw)23C6(ε+1)2|Ω|(Ωu2+Ω(v1)2+Ωw2)for all tT1, $

    which alongside (4.26) implies some constant $ C_7 > 0 $

    $ \frac{d}{dt}G(t)\leqslant-C_7G^2(t)\quad\text{for all}\ t\geqslant T_1. $

    Solving the above inequality directly yields a constant $ C_8 > 0 $ such that

    $ G(t)\leqslant C_8(t+1)^{-1}\quad\text{for all}\ t\geqslant T_1. $

    Similar to the case $ a_1 < a_3 $, we can use (4.30), the Gagliardo-Nirenberg inequality and Lemma 4.1 to get the convergence rate of $ \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} $.

    The author warmly thanks the reviewers for several inspiring comments and helpful suggestions. The research of the author was supported by the National Nature Science Foundation of China (Grant No. 12101377) and the Nature Science Foundation of Shanxi Province (Grant No. 20210302124080).

    The author declares there is no conflict of interest.

    [1] Donnelly N, Humphreys GW, Riddoch MJ (1991) Parallel computation of primitive shape descriptions. J Exp Psychol Hum Percept Perform 17: 561-570. doi: 10.1037/0096-1523.17.2.561
    [2] Krauzlis RJ, Lovejoy LP, Zenon A (2013) Superior Colliculus and Visual Spatial Attention. Annu Rev Neurosci 36. doi:10.1146/annurev-neuro-062012-170249.
    [3] Wurtz RH, McAlonan K, Cavanaugh J, et al. (2011) Thalamic pathways for active vision. Trends Cogn Sci 15: 177-184. doi:10.1016/j.tics.2011.02.004.
    [4] Fischer J, Whitney D (2012) Attention gates visual coding in the human pulvinar. Nat Commun 3: 1051. doi:10.1038/ncomms2054.
    [5] Strumpf H, Mangun GR, Boehler CN, et al. (2013) The role of the pulvinar in distractor processing and visual search. Hum Brain Mapp 34: 1115-1132. doi:10.1002/hbm.21496. doi: 10.1002/hbm.21496
    [6] Michael GA, Desmedt S (2004) The human pulvinar and attentional processing of visual distractors. Neurosci Lett 362: 176-181. doi:10.1016/j.neulet.2004.01.062. doi: 10.1016/j.neulet.2004.01.062
    [7] Snow JC, Allen HA, Rafal RD, et al. (2009) Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey. Proc Natl Acad Sci USA 106: 4054-4059. doi:10.1073/pnas.0810086106.
    [8] Lyon DC, Nassi JJ, Callaway EM (2010) A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey. Neuron 65: 270-279. doi:10.1016/j.neuron.2010.01.003. doi: 10.1016/j.neuron.2010.01.003
    [9] Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J Neurophysiol 35: 542-559.
    [10] Itaya SK, Van Hoesen GW (1983) Retinal projections to the inferior and medial pulvinar nuclei in the old-world monkey. Brain Res 269: 223-230. doi:10.1016/0006-8993(83)90131-2. doi: 10.1016/0006-8993(83)90131-2
    [11] Wilson ME, Toyne MJ (1970) Retino-tectal and cortico-tectal projections inMacaca mulatta. Brain Res 24: 395-406. doi:10.1016/0006-8993(70)90181-2. doi: 10.1016/0006-8993(70)90181-2
    [12] Cotton PL, Smith AT (2007) Contralateral Visual Hemifield Representations in the Human Pulvinar Nucleus. J Neurophysiol 98: 1600-1609. doi:10.1152/jn.00419.2007. doi: 10.1152/jn.00419.2007
    [13] Schneider KA, Kastner S (2005) Visual Responses of the Human Superior Colliculus: A High-Resolution Functional Magnetic Resonance Imaging Study. J Neurophysiol 94: 2491-2503. doi:10.1152/jn.00288.2005. doi: 10.1152/jn.00288.2005
    [14] Jóhannesson ÓI, Kristjánsson Á (2013) Violating the main sequence: asymmetries in saccadic peak velocities for saccades into the temporal versus nasal hemifields. Exp Brain Res 227: 101-110. doi:10.1007/s00221-013-3490-8. doi: 10.1007/s00221-013-3490-8
    [15] Rafal R, Henik A, Smith J (1991) Extrageniculate Contributions to Reflex Visual Orienting in Normal Humans: A Temporal Hemifield Advantage. J Cogn Neurosci 3: 322–328. doi:10.1162/jocn.1991.3.4.322. doi: 10.1162/jocn.1991.3.4.322
    [16] Zackon DH, Casson EJ, Zafar A, et al. (1999) The temporal order judgment paradigm: subcorticalattentional contribution under exogenous and endogenouscueing conditions. Neuropsychologia 37: 511-520. doi:10.1016/S0028-3932(98)00134-1. doi: 10.1016/S0028-3932(98)00134-1
    [17] Michael GA, Ojéda N (2005) Visual field asymmetries in selective attention: Evidence from a modified search paradigm. Neurosci Lett 388: 65-70. doi:10.1016/j.neulet.2005.06.027. doi: 10.1016/j.neulet.2005.06.027
    [18] Michael GA, Gálvez-García G (2011) Salience-based progression of visual attention. Behav Brain Res 224: 87-99. doi:10.1016/j.bbr.2011.05.024. doi: 10.1016/j.bbr.2011.05.024
    [19] Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: The biology and behavior of brain asymmetries. Cambridge, UK: Cambridge University Press.
    [20] LaBerge D (1990) Thalamic and Cortical Mechanisms of Attention Suggested by Recent Positron Emission Tomographic Experiments. J Cogn Neurosci 2: 358-372. doi:10.1162/jocn.1990.2.4.358. doi: 10.1162/jocn.1990.2.4.358
    [21] Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97-113. doi: 10.1016/0028-3932(71)90067-4
    [22] Christman S (1989) Perceptual characteristics in visual laterality research. Brain Cogn 11: 238-257.
    [23] Williams C, Azzopardi P, Cowey A (1995) Nasal and temporal retinal ganglion cells projecting to the midbrain: Implications for “blindsight.” Neuroscience 65: 577-586. doi:10.1016/0306-4522(94)00489-R. doi: 10.1016/0306-4522(94)00489-R
    [24] Sylvester R, Josephs O, Driver J, et al. (2007) Visual fMRI Responses in Human Superior Colliculus Show a Temporal–Nasal Asymmetry That Is Absent in Lateral Geniculate and Visual Cortex. J Neurophysiol 97: 1495-1502. doi:10.1152/jn.00835.2006.
    [25] Sapir A, Soroker N, Berger A, et al. (1992) Inhibition of return in spatial attention: direct evidence for collicular generation. Nat Neurosci 2: 1053-1054. doi:10.1038/15977.
    [26] Sapir A, Rafal R, Henik A (2002) Attending to the thalamus: inhibition of return and
    nasal-temporal asymmetry in the pulvinar. Neuroreport 13: 693-697. doi: 10.1097/00001756-200204160-00031
    [27] Mesulam MM (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci 354: 1325-1346. doi: 10.1098/rstb.1999.0482
    [28] Karnath H-O, Himmelbach M, Rorden C (2002) The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125: 350-360. doi: 10.1093/brain/awf032
  • This article has been cited by:

    1. Luis E. Ayala-Hernández, Gabriela Rosales-Muñoz, Armando Gallegos, María L. Miranda-Beltrán, Jorge E. Macías-Díaz, On a deterministic mathematical model which efficiently predicts the protective effect of a plant extract mixture in cirrhotic rats, 2023, 21, 1551-0018, 237, 10.3934/mbe.2024011
    2. Rinaldo M. Colombo, Paola Goatin, Elena Rossi, A Hyperbolic–parabolic framework to manage traffic generated pollution, 2025, 85, 14681218, 104361, 10.1016/j.nonrwa.2025.104361
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5389) PDF downloads(1043) Cited by(1)

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog