Research article Special Issues

Global, finite energy, weak solutions to a magnetic quantum fluid system

  • Published: 23 April 2025
  • In this study, we showed the existence of global, finite energy, weak solutions to a class of compressible Euler equations, describing the dynamics of a quantum fluid interacting with an external magnetic field. To do so, we exploited suitable a priori estimates for weak solutions of the underlying wave-function dynamics, governed by a magnetic semilinear Schrödinger equation.

    Citation: Raffaele Scandone. Global, finite energy, weak solutions to a magnetic quantum fluid system[J]. Networks and Heterogeneous Media, 2025, 20(2): 345-355. doi: 10.3934/nhm.2025016

    Related Papers:

  • In this study, we showed the existence of global, finite energy, weak solutions to a class of compressible Euler equations, describing the dynamics of a quantum fluid interacting with an external magnetic field. To do so, we exploited suitable a priori estimates for weak solutions of the underlying wave-function dynamics, governed by a magnetic semilinear Schrödinger equation.



    加载中


    [1] P. Nozìeres, D. Pines, The Theory of Quantum Liquids: Superfluid Bose Liquids, Boca Raton: CRC Press, 1990. https://doi.org/10.1201/9780429492679
    [2] I. M. Khalatnikov, An Introduction to the Theory of Superfluidity, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9780429502897
    [3] F. Haas, Quantum Plasmas: An Hydrodynamic Approach, New York: Springer, 2011.
    [4] A. Jüngel, Transport Equations for Semiconductors, Berlin Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-540-89526-8
    [5] R. Feynman, Statistical Mechanics, Boca Raton: CRC Press, 1998. https://doi.org/10.1201/9780429493034
    [6] E. M. Lifschits, L. P. Pitaevskii, Statistical Physics, New York: Pergamon Press, 1980.
    [7] L. D. Landau, E. M. Lifschits, Fluid Dynamics, Elsevier, 1987. https://doi.org/10.1016/C2013-0-03799-1
    [8] L. D. Landau, V. L. Ginzburg, On the theory of superconductivity, In: On Superconductivity and Superfluidity, Berlin, Heidelberg: Springer, 2009.
    [9] M. I. Trukhanova, Quantum hydrodynamics approach to the research of quantum effects and vorticity evolution in spin quantum plasmas, Prog. Theor. Exp. Phys., 2013 (2013), 111|01. https://doi.org/10.1093/ptep/ptt086 doi: 10.1093/ptep/ptt086
    [10] I. B. Porat, Derivation of Euler's equations of perfect fluids from von Neumann's equation with magnetic field, J. Stat. Phys., 190 (2023), 121. https://doi.org/10.1007/s10955-023-03131-5 doi: 10.1007/s10955-023-03131-5
    [11] M. Falconi, N. Leopold, Derivation of the Maxwell-Schrödinger equations: A note on the infrared sector of the radiation field, J. Math. Phys., 64 (2023), 011901. https://doi.org/10.1063/5.0093786 doi: 10.1063/5.0093786
    [12] M. Tsubota, M. Kobayashi, H. Takeuchi, Quantum hydrodynamics, Phys. Rep., 522 (2013), 191–238. https://doi.org/10.1016/j.physrep.2012.09.007 doi: 10.1016/j.physrep.2012.09.007
    [13] E. Madelung, Quantuentheorie in hydrodynamischer form, Z. Physik, 40 (1927), 322–326. https://doi.org/10.1007/BF01400372 doi: 10.1007/BF01400372
    [14] P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657–686. https://doi.org/10.1007/s00220-008-0632-0 doi: 10.1007/s00220-008-0632-0
    [15] P. Antonelli, P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Ration. Mech. Anal., 203 (2012), 499–527. https://doi.org/10.1007/s00205-011-0454-7 doi: 10.1007/s00205-011-0454-7
    [16] H. L. Li, P. Marcati, Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors, Commun. Math. Phys., 245 (2004), 215–247. https://doi.org/10.1007/s00220-003-1001-7 doi: 10.1007/s00220-003-1001-7
    [17] D. Donatelli, E. Feireisl, P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Partial Differ. Equations, 40 (2015), 1314–1335. https://doi.org/10.1080/03605302.2014.972517 doi: 10.1080/03605302.2014.972517
    [18] P. Antonelli, Remarks on the derivation of finite energy weak solutions to the QHD system, Proc. Am. Math. Soc., 149 (2021), 1985–1997. https://doi.org/10.1090/proc/14502 doi: 10.1090/proc/14502
    [19] R. Carles, R. Danchin, J. C. Saut, Madelung, Gross-Pitaevsiii and Korteweg, Nonlinearity, 25 (2012), 2843–2873. https://doi.org/10.1088/0951-7715/25/10/2843 doi: 10.1088/0951-7715/25/10/2843
    [20] F. Giuliani, R. Scandone, Energy cascade and Sobolev norms inflation for the quantum Euler equations on tori, arXiv: 2410.21080, 2024.
    [21] P. Antonelli, L. E. Hientzsch, P. Marcati, H. Zheng, On some results for quantum hydro-dynamical models (mathematical analysis in fluid and gas dynamics), RIMS Kokyuroku, 2070 (2018), 107–129.
    [22] T. Cazenave, Semilinear Schrodinger Equations, American Mathematical Society, 2003.
    [23] P. Antonelli, P. Marcati, R. Scandone, Existence and stability of almost finite energy weak solutions to the quantum Euler-Maxwell system, J. Math. Pures Appl., 191 (2024), 103629. https://doi.org/10.1016/j.matpur.2024.103629 doi: 10.1016/j.matpur.2024.103629
    [24] P. Antonelli, M. D'Amico, P. Marcati, Nonlinear Maxwell-Schrödinger system and quantum magnetohydrodynamics in 3-D, Commun. Math. Sci., 15 (2017), 451–479. https://doi.org/10.4310/CMS.2017.v15.n2.a7 doi: 10.4310/CMS.2017.v15.n2.a7
    [25] M. Nakamura, T. Wada, Global existence and uniqueness of solutions to the Maxwell-Schrödinger equations, Commun. Math. Phys., 276 (2007), 315–339. https://doi.org/10.1007/s00220-007-0337-9 doi: 10.1007/s00220-007-0337-9
    [26] P. Antonelli, P. Marcati, R. Scandone, Global well-posedness for the non-linear Maxwell-Schrödinger system, Ann. Sc. Norm. Super. Pisa Cl. Sci., 23 (2022), 1293–1324. https://doi.org/10.2422/2036-2145.202010-033 doi: 10.2422/2036-2145.202010-033
    [27] T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equations, 25 (2006), 403–408. https://doi.org/10.1007/s00526-005-0349-2 doi: 10.1007/s00526-005-0349-2
    [28] K. Fujiwara, H. Myiazaki, The derivation of conservation laws for nonlinear Schrödinger equations with power type nonlinearities (Regularity and singularity for partial differential equations with conservation laws), RIMS Kokyuroku Bessatsu, 63 (2017), 13–21.
    [29] P. Antonelli, A. Michelangeli, R. Scandone, Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials, Z. Angew. Math. Phys., 69 (2018), 46. https://doi.org/10.1007/s00033-018-0938-5 doi: 10.1007/s00033-018-0938-5
    [30] S. Bianchini, Exact integrability conditions for cotangent vector fields, Manuscripta Math., 173 (2024), 293–340. https://doi.org/10.1007/s00229-023-01461-y doi: 10.1007/s00229-023-01461-y
    [31] H. Mizutani, Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials Ⅱ. Superquadratic potentials, Commun. Pure Appl. Anal., 13 (2014), 2177–2210.
    [32] P. D'Ancona, L. Fanelli, L. Vega, N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227–3240. https://doi.org/10.1016/j.jfa.2010.02.007 doi: 10.1016/j.jfa.2010.02.007
    [33] M. B. Erdogan, M. Goldberg, W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in ${{\mathbb R}}^3$, J. Eur. Math. Soc., 10 (2008), 507–531. https://doi.org/10.4171/jems/120 doi: 10.4171/jems/120
    [34] M. Keel, T. Tao, Endpoint Strichartz estimates, Am. J. Math., 120 (1998), 955–980. https://doi.org/10.1353/ajm.1998.0039 doi: 10.1353/ajm.1998.0039
    [35] D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient en compte des forces capillaires causés par des variations de densité, Archives Neerlandaises des Sciences Exactes et Naturelles, 6 (1901), 1–24.
    [36] C. Audiard, B. Haspot, Global well-posedness of the Euler–Korteweg system for small irrotational data, Commun. Math. Phys., 351 (2017), 201–247. https://doi.org/10.1007/s00220-017-2843-8 doi: 10.1007/s00220-017-2843-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(829) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog