Review

Arc fault detection using artificial intelligence: Challenges and benefits


  • Received: 10 February 2023 Revised: 12 April 2023 Accepted: 15 May 2023 Published: 23 May 2023
  • This systematic review aims to investigate recent developments in the area of arc fault detection. The rising demand for electricity and concomitant expansion of energy systems has resulted in a heightened risk of arc faults and the likelihood of related fires, presenting a matter of considerable concern. To address this challenge, this review focuses on the role of artificial intelligence (AI) in arc fault detection, with the objective of illuminating its advantages and identifying current limitations. Through a meticulous literature selection process, a total of 63 articles were included in the final analysis. The findings of this review suggest that AI plays a significant role in enhancing the accuracy and speed of detection and allowing for customization to specific types of faults in arc fault detection. Simultaneously, three major challenges were also identified, including missed and false detections, the restricted application of neural networks and the paucity of relevant data. In conclusion, AI has exhibited tremendous potential for transforming the field of arc fault detection and holds substantial promise for enhancing electrical safety.

    Citation: Chunpeng Tian, Zhaoyang Xu, Lukun Wang, Yunjie Liu. Arc fault detection using artificial intelligence: Challenges and benefits[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12404-12432. doi: 10.3934/mbe.2023552

    Related Papers:

  • This systematic review aims to investigate recent developments in the area of arc fault detection. The rising demand for electricity and concomitant expansion of energy systems has resulted in a heightened risk of arc faults and the likelihood of related fires, presenting a matter of considerable concern. To address this challenge, this review focuses on the role of artificial intelligence (AI) in arc fault detection, with the objective of illuminating its advantages and identifying current limitations. Through a meticulous literature selection process, a total of 63 articles were included in the final analysis. The findings of this review suggest that AI plays a significant role in enhancing the accuracy and speed of detection and allowing for customization to specific types of faults in arc fault detection. Simultaneously, three major challenges were also identified, including missed and false detections, the restricted application of neural networks and the paucity of relevant data. In conclusion, AI has exhibited tremendous potential for transforming the field of arc fault detection and holds substantial promise for enhancing electrical safety.



    加载中


    [1] S. Lu, B. Phung, D. Zhang, A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems, Renew Sust. Energ. Rev., 89 (2018), 88–98. https://doi.org/10.1016/j.rser.2018.03.010 doi: 10.1016/j.rser.2018.03.010
    [2] S. Chae, J. Park, S. Oh, Series DC arc fault detection algorithm for DC microgrids using relative magnitude comparison, IEEE J. Em. Sel. Top P., 4 (2016), 1270–1278. https://doi.org/10.1109/JESTPE.2016.2592186 doi: 10.1109/JESTPE.2016.2592186
    [3] Y. Shi, H. Li, X. Fu, R. Luan, Y. Wang, N. Wang, et al., Self-powered difunctional sensors based on sliding contact-electrification and tribovoltaic effects for pneumatic monitoring and controlling, Nano Energy, 110 (2023), 108339. https://doi.org/10.1016/j.nanoen.2023.108339 doi: 10.1016/j.nanoen.2023.108339
    [4] Z. Wang, S. McConnell, R. S. Balog, J. Johnson, Arc fault signal detection-fourier transformation vs. wavelet decomposition techniques using synthesized data, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), (2014), 3239–3244. https://doi.org/10.1109/PVSC.2014.6925625
    [5] W. Qi, H. Su, A. Aliverti, A smartphone-based adaptive recognition and real-time monitoring system for human activities, IEEE T. Hum. Mach. Syst., 50 (2020), 414–423. https://doi.org/10.1109/THMS.2020.2984181 doi: 10.1109/THMS.2020.2984181
    [6] J. P. Pulkkinen, Commercial arc fault detection devices in military electromagnetic environment, IEEE Electromagn. Compat., 7 (2018), 49–52. https://doi.org/10.1109/MEMC.2018.8637290 doi: 10.1109/MEMC.2018.8637290
    [7] J. Johnson, M. Montoya, S. McCalmont, G. Katzir, F. Fuks, J. Earle, et al., Differentiating series and parallel photovoltaic arc-faults, in 2012 38th IEEE Photovoltaic Specialists Conference, (2012), 000720–000726. https://doi.org/10.1109/PVSC.2012.6317708
    [8] M. Xie, X. Zhang, Y. Dong, W. Li, Arc fault detection for DC solid state power controllers, in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), (2014), 1–6. https://doi.org/10.1109/ITEC-AP.2014.6940864
    [9] Q. Lu, Z. Ye, M. Su, Y. Li, Y. Sun, H. Huang, A DC series arc fault detection method using line current and supply voltage, IEEE Access, 8 (2020), 10134–10146. https://doi.org/10.1109/ACCESS.2019.2963500 doi: 10.1109/ACCESS.2019.2963500
    [10] W. Miao, Q. Xu, K. Lam, P. W. Pong, H. V. Poor, DC arc-fault detection based on empirical mode decomposition of arc signatures and support vector machine, IEEE Sens. J., 21 (2020), 7024–7033. https://doi.org/10.1109/JSEN.2020.3041737 doi: 10.1109/JSEN.2020.3041737
    [11] Q. Xiong, S. Ji, L. Zhu, L. Zhong, Y. Liu, A novel DC arc fault detection method based on electromagnetic radiation signal, IEEE T. Plasma. Sci., 45 (2017), 472–478. https://doi.org/10.1109/TPS.2017.2653817 doi: 10.1109/TPS.2017.2653817
    [12] H. Su, W. Qi, Y. Hu, H. R. Karimi, G. Ferrigno, E. De Momi, An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators, IEEE Trans. Industr. Inf., 18 (2020), 1864–1872. https://doi.org/10.1109/TII.2020.3036693 doi: 10.1109/TII.2020.3036693
    [13] X. Yao, J. Wang, D. L. Schweickart, Review and recent developments in DC arc fault detection, in 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC), (2016), 467–472. https://doi.org/10.1109/IPMHVC.2016.8012887
    [14] H. Qiao, J. Chen, X. Huang, A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems, IEEE Trans. Cybern., 52 (2021), 11267–11280. https://doi.org/10.1109/TCYB.2021.3071312 doi: 10.1109/TCYB.2021.3071312
    [15] D. E. O'Leary, Artificial intelligence and big data, IEEE Intell. Syst., 28 (2013), 96–99. https://doi.org/10.1109/MIS.2013.39 doi: 10.1109/MIS.2013.39
    [16] H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno, E. De Momi, Toward teaching by demonstration for robot-assisted minimally invasive surgery, IEEE Trans. Autom. Sci. Eng., 18 (2021), 484–494. https://doi.org/10.1109/TASE.2020.3045655 doi: 10.1109/TASE.2020.3045655
    [17] H. Qiao, S. Zhong, Z. Chen, H. Wang, Improving performance of robots using human-inspired approaches: A survey, Sci. China Inf. Sci., 65 (2022), 1–31. https://doi.org/10.1007/s11432-022-3606-1 doi: 10.1007/s11432-022-3606-1
    [18] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, H. Müller, Causability and explainability of artificial intelligence in medicine, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 9 (2019), e1312. https://doi.org/10.1002/widm.1312 doi: 10.1002/widm.1312
    [19] L. Chen, P. Chen, Z. Lin, Artificial intelligence in education: A review, IEEE Access, 8 (2020), 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510 doi: 10.1109/ACCESS.2020.2988510
    [20] D. S. Battina, Application research of artificial intelligence in electrical automation control, Int. J. Creat. Res. Thoughts, 2015 (2015), 2320–2882. https://ssrn.com/abstract-4003560
    [21] J. Chen, H. Qiao, Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system, IEEE Trans. Syst. Man Cybern. Syst., 51 (2020), 3993–4006. https://doi.org/10.1109/TSMC.2020.2966818 doi: 10.1109/TSMC.2020.2966818
    [22] X. Han, D. Li, L. Huang, H. Huang, J. Yang, Y. Zhang, et al., Series arc fault detection method based on category recognition and artificial neural network, Electronics, 9 (2020), 1367. https://doi.org/10.3390/electronics9091367 doi: 10.3390/electronics9091367
    [23] V. Le, X. Yao, C. Miller, B. H. Tsao, Series dc arc fault detection based on ensemble machine learning, IEEE Trans. Power. Electron., 35 (2020), 7826–7839. https://doi.org/10.1109/TPEL.2020.2969561 doi: 10.1109/TPEL.2020.2969561
    [24] Q. Yu, Y. Hu, and Y. Yang, A review of low voltage AC series arc fault detection, Low Voltage Appar., 586 (2020), 24. https://doi.org/10.16628/j.cnki.2095-8188.2020.01.004 doi: 10.16628/j.cnki.2095-8188.2020.01.004
    [25] A. H. Omran, D. M. Said, S. H. Abdulhussain, S. M. Hussin, N. Ahmad, Models, detection methods, and challenges in DC arc fault: A review, J. Teknol., 83 (2021), 1–16. https://doi.org/10.11113/jurnalteknologi.v83.15101 doi: 10.11113/jurnalteknologi.v83.15101
    [26] J. Jiang, W. Li, Z. Wen, Y. Bie, H. Schwarz, C. Zhang, Series arc fault detection based on random forest and deep neural network, IEEE Sens. J., 21 (2021), 17171–17179. https://doi.org/10.1109/JSEN.2021.3082294 doi: 10.1109/JSEN.2021.3082294
    [27] H. L. Dang, J. Kim, S. Kwak, S. Choi, Series DC arc fault detection using machine learning algorithms, IEEE Access, 9 (2021), 133346–133364. https://doi.org/10.1109/ACCESS.2021.3115512 doi: 10.1109/ACCESS.2021.3115512
    [28] D. Tranfield, D. Denyer, P. Smart, Towards a methodology for developing evidence-informed management knowledge by means of systematic review, Brit. J. Manage., 14 (2003), 207–222. https://doi.org/10.1111/1467-8551.00375 doi: 10.1111/1467-8551.00375
    [29] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, et al., The prisma 2020 statement: An updated guideline for reporting systematic reviews, Syst. Rev., 10 (2021), 1–11. https://doi.org/10.1016/j.ijsu.2021.105906 doi: 10.1016/j.ijsu.2021.105906
    [30] M. K. Alam, F. H. Khan, J. Johnson, J. Flicker, Pv arc-fault detection using spread spectrum time domain reflectometry (sstdr), in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), (2014), 3294–3300. https://doi.org/10.1109/ECCE.2014.6953848
    [31] M. Atharparvez, K. R. Purandare, Series arc fault detection using novel signal processing technique, in 2018 IEEE Holm Conference on Electrical Contacts, (2018), 335–339. https://doi.org/10.1109/HOLM.2018.8611761
    [32] S. Li, Y. Yan, Fault arc detection based on time and frequency domain analysis and radom forest, in 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), (2021), 248–252. https://doi.org/10.1109/ICCNEA53019.2021.00062
    [33] G. Artale, A. Cataliotti, V. Cosentino, D. Di Cara, A. Di Stefano, N. Panzavecchia, et al., Time domain symmetry parameters analysis for series arc fault detection, in 2022 IEEE 12th International Workshop on Applied Measurements for Power Systems (AMPS), (2022), 1–6. https://doi.org/10.1109/AMPS55790.2022.9978832
    [34] R. Jiang, G. Bao, Series arc fault detection method based on signal-type enumeration and zoom circular convolution algorithm, IEEE Trans. Ind. Electron.. https://doi.org/10.1109/TIE.2022.3222632
    [35] N. Qu, J. Wang, J. Liu, An arc fault detection method based on current amplitude spectrum and sparse representation, IEEE Trans. Instrum. Meas., 68 (2018), 3785–3792. https://doi.org/10.1109/TIM.2018.2880939 doi: 10.1109/TIM.2018.2880939
    [36] Q. Xiong, X. Feng, A. L. Gattozzi, X. Liu, L. Zheng, L. Zhu, et al., Series arc fault detection and localization in dc distribution system, IEEE Trans. Instrum. Meas., 69 (2019), 122–134. https://doi.org/10.1109/TIM.2019.2890892 doi: 10.1109/TIM.2019.2890892
    [37] M. K. Khafidli, E. Prasetyono, D. O. Anggriawan, A. Tjahjono, M. H. R. A. Syafii, Implementation AC series arc fault recognition using mikrokontroller based on fast fourier transform, in 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), (2018), 31–36. https://doi.org/10.1109/ELECSYM.2018.8615529
    [38] G. Bao, R. Jiang, X. Gao, Novel series arc fault detector using high-frequency coupling analysis and multi-indicator algorithm, IEEE Access, 7 (2019), 92161–92170. https://doi.org/10.1109/ACCESS.2019.2927635 doi: 10.1109/ACCESS.2019.2927635
    [39] M. H. R. A. Syafi'i, E. Prasetyono, M. K. Khafidli, D. O. Anggriawan, A. Tjahjono, Real time series DC arc fault detection based on fast fourier transform, in 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), (2018), 25–30. https://doi.org/10.1109/ELECSYM.2018.8615525
    [40] J. Jiang, Z. Wen, M. Zhao, Y. Bie, C. Li, M. Tan, et al., Series arc detection and complex load recognition based on principal component analysis and support vector machine, IEEE Access, 7 (2019), 47221–47229. https://doi.org/10.1109/ACCESS.2019.2905358 doi: 10.1109/ACCESS.2019.2905358
    [41] L. Wang, H. Qiu, P. Yang, L. Mu, Arc fault detection algorithm based on variational mode decomposition and improved multi-scale fuzzy entropy, Energies, 14 (2021), 4137. https://doi.org/10.3390/en14144137 doi: 10.3390/en14144137
    [42] H. P. Park, S. Chae, Dc series arc fault detection algorithm for distributed energy resources using arc fault impedance modeling, IEEE Access, 8 (2020), 179039–179046. https://doi.org/10.1109/ACCESS.2020.3027869 doi: 10.1109/ACCESS.2020.3027869
    [43] S. Liu, L. Dong, X. Liao, X. Cao, X. Wang, B. Wang, Application of the variational mode decomposition-based time and time–frequency domain analysis on series dc arc fault detection of photovoltaic arrays, IEEE Access, 7 (2019), 126177–126190. https://doi.org/10.1109/ACCESS.2019.2938979 doi: 10.1109/ACCESS.2019.2938979
    [44] F. Guo, H. Gao, Z. Wang, J. You, A. Tang, Y. Zhang, Detection and line selection of series arc fault in multi-load circuit, IEEE Trans. Plasma Sci., 47 (2019), 5089–5098. https://doi.org/10.1109/TPS.2019.2942630 doi: 10.1109/TPS.2019.2942630
    [45] Y. Gao, L. Wang, Y. Zhang, Z. Yin, Research on ac arc fault characteristics based on the difference between adjacent current cycle, in 2019 Prognostics and System Health Management Conference (PHM-Qingdao), (2019), 1–5. https://doi.org/10.1109/PHM-Qingdao46334.2019.8943054
    [46] X. Cai, R. J. Wai, Intelligent DC arc-fault detection of solar PV power generation system via optimized vmd-based signal processing and pso–svm classifier, IEEE J. Photovolt., 12 (2022), 1058–1077. https://doi.org/10.1109/JPHOTOV.2022.3166919 doi: 10.1109/JPHOTOV.2022.3166919
    [47] Q. Xiong, S. Ji, X. Liu, X. Li, L. Zhu, X. Feng, et al., Electromagnetic radiation characteristics of series DC arc fault and its determining factors, IEEE Trans. Plasma Sci., 46 (2018), 4028–4036. https://doi.org/10.1109/TPS.2018.2864605 doi: 10.1109/TPS.2018.2864605
    [48] Y. Ke, W. Zhang, C. Suo, Y. Wang, Y. Ren, Research on low-voltage AC series arc-fault detection method based on electromagnetic radiation characteristics, Energies, 15 (2022), 1829. https://doi.org/10.3390/en15051829 doi: 10.3390/en15051829
    [49] S. Zhao, Y. Wang, F. Niu, C. Zhu, Y. Xu, K. Li, A series DC arc fault detection method based on steady pattern of high-frequency electromagnetic radiation, IEEE Trans. Plasma Sci., 47 (2019), 4370–4377. https://doi.org/10.1109/TPS.2019.2932747 doi: 10.1109/TPS.2019.2932747
    [50] S. Wei, Q. Yang, Y. Qi, T. Zhou, W. Liao, J. Sun, A location method for arc fault based on electromagnetic radiation signals and tdoa, in 2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), (2022), 427–431. https://doi.org/10.1109/CEEPE55110.2022.9783382
    [51] L. Zhao, Y. Zhou, K. L. Chen, S. H. Rau, W. J. Lee, High-speed arcing fault detection: Using the light spectrum, IEEE Ind. Appl. Mag., 26 (2020), 29–36. https://doi.org/10.1109/MIAS.2019.2943664 doi: 10.1109/MIAS.2019.2943664
    [52] H. Su, W. Qi, Y. Schmirander, S. E. Ovur, S. Cai, X. Xiong, A human activity-aware shared control solution for medical human–robot interaction, Assem. Autom., 42 (2022), 388–394. https://doi.org/10.1108/AA-12-2021-0174 doi: 10.1108/AA-12-2021-0174
    [53] W. Qi, H. Su, A cybertwin based multimodal network for ECG patterns monitoring using deep learning, IEEE Trans. Ind. Informat., 18 (2022), 6663–6670. https://doi.org/10.1109/TII.2022.3159583 doi: 10.1109/TII.2022.3159583
    [54] H. Su, W. Qi, J. Chen, D. Zhang, Fuzzy approximation-based task-space control of robot manipulators with remote center of motion constraint, IEEE Trans. Fuzzy. Syst., 30 (2022), 1564–1573. https://doi.org/10.1109/TFUZZ.2022.3157075 doi: 10.1109/TFUZZ.2022.3157075
    [55] Y. Shi, L. Li, J. Yang, Y Wang, S. Hao, Center-based transfer feature learning with classifier adaptation for surface defect recognition, Mech. Syst. Signal Process., 188 (2023), 110001. https://doi.org/10.1016/j.ymssp.2022.110001 doi: 10.1016/j.ymssp.2022.110001
    [56] W. Qi, H. Fan, H. R. Karimi, H. Su, An adaptive reinforcement learning-based multimodal data fusion framework for human-robot confrontation gaming, Neural Network, 2023 (2023). https://doi.org/10.1016/j.neunet.2023.04.043
    [57] V. Le, X. Yao, Ensemble machine learning based adaptive arc fault detection for DC distribution systems, in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), (2019), 1984–1989. https://doi.org/10.1109/APEC.2019.8721922
    [58] H. D. Vu, E. Calderon, P. Schweitzer, S. Weber, N. Britsch, Multi criteria series arc fault detection based on supervised feature selection, Int. J. Electr. Power Energy Syst., 113 (2019), 23–34. https://doi.org/10.1016/j.ijepes.2019.05.012 doi: 10.1016/j.ijepes.2019.05.012
    [59] K. Xia, H. Guo, S. He, W. Yu, J. Xu, H. Dong, Binary classification model based on machine learning algorithm for the DC serial arc detection in electric vehicle battery system, IET Power Electron., 12 (2019), 112–119. https://doi.org/10.1049/iet-pel.2018.5789 doi: 10.1049/iet-pel.2018.5789
    [60] V. Le, X. Yao, C. Miller, T. B. Hung, Arc fault detection in DC distribution using semi-supervised ensemble machine learning, in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), (2019), 2939–2945. https://doi.org/10.1109/ECCE.2019.8913286
    [61] A. K. Gupta, A. Routray, V. A. Naikan, Series arc fault detection in low voltage distribution system with signal processing and machine learning approach, in IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, (2021), 1–6. https://doi.org/10.1109/IECON48115.2021.9589809
    [62] S. H. Mortazavi, Z. Moravej, S. M. Shahrtash, A hybrid method for arcing faults detection in large distribution networks, Int. J. Elec. Power, 94 (2018), 141–150. https://doi.org/10.1016/j.ijepes.2017.06.036 doi: 10.1016/j.ijepes.2017.06.036
    [63] Z. Yin, L. Wang, Y. Zhang, Y. Gao, A novel arc fault detection method integrated random forest, improved multi-scale permutation entropy and wavelet packet transform, Electronics, 8 (2019), 396. https://doi.org/10.3390/electronics8040396 doi: 10.3390/electronics8040396
    [64] V. Le, X. Yao, C. Miller, T. B. Hung, Series arc fault detection and localization in DC distribution based on master controller, in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), (2020), 2499–2504. https://doi.org/10.1109/ECCE44975.2020.9235651
    [65] V. Le, C. Miller, B. H. Tsao, X. Yao, Series arc fault identification in DC distribution based on random forest predicted probability, IEEE Trans. Emerg. Sel. Topics Power Electron.. 2022 (2022). https://doi.org/10.1109/JESTPE.2022.3228421
    [66] K. C. Paul, L. Schweizer, T. Zhao, C. Chen, Y. Wang, Series AC arc fault detection using decision tree-based machine learning algorithm and raw current, in 2022 IEEE Energy Conversion Congress and Exposition (ECCE), (2022), 1–8. https://doi.org/10.1109/ECCE50734.2022.9947475
    [67] X. Liu, H. Huang, J. Xiang, A personalized diagnosis method to detect faults in gears using numerical simulation and extreme learning machine, Knowl. Based Syst., 195 (2020), 105653. https://doi.org/10.1016/j.knosys.2020.105653 doi: 10.1016/j.knosys.2020.105653
    [68] Y. Lou, A. Kumar, J. Xiang, Machinery fault diagnosis based on domain adaptation to bridge the gap between simulation and measured signals, IEEE Trans. Instrum. Meas., 71 (2022), 1–9. https://doi.org/10.1109/TIM.2022.3180416 doi: 10.1109/TIM.2022.3180416
    [69] Y. Gao, X. Liu, J. Xiang, FEM simulation-based generative adversarial networks to detect bearing faults, IEEE Trans. Ind. Inform., 16 (2020), 4961–4971. https://doi.org/10.1109/TII.2020.2968370 doi: 10.1109/TII.2020.2968370
    [70] Y. Gao, X. Liu, J. Xiang, Fault detection in gears using fault samples enlarged by a combination of numerical simulation and a generative adversarial network, IEEE/ASME Trans. Mechatron., 27 (2021), 3798–3805. https://doi.org/10.1109/TMECH.2021.3132459 doi: 10.1109/TMECH.2021.3132459
    [71] H. Wang, R. Yang, J. Xiang, Numerical simulation of gears for fault detection using artificial intelligence models, Measurement, 203 (2020), 4961–4971. https://doi.org/10.1016/j.measurement.2022.111898 doi: 10.1016/j.measurement.2022.111898
    [72] H. Su, Y. Hu, H. R. Karimi, A. Knoll, G. Ferrigno, E. De Momi, Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results, Neural Network, 131 (2020), 291–299. https://doi.org/10.1016/j.neunet.2020.07.033 doi: 10.1016/j.neunet.2020.07.033
    [73] W. Qi, A. Aliverti, A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity, IEEE J. Biomed. Health Inf., 24 (2019), 2199–2207. https://doi.org/10.1109/JBHI.2019.2963048 doi: 10.1109/JBHI.2019.2963048
    [74] J. Chen, H. Qiao, Motor-cortex-like recurrent neural network and multitask learning for the control of musculoskeletal systems, IEEE Trans. Cogn. Develop. Syst., 14 (2020), 424–436. https://doi.org/10.1109/TCDS.2020.3045574 doi: 10.1109/TCDS.2020.3045574
    [75] H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, E. De Momi, Deep neural network approach in robot tool dynamics identification for bilateral teleoperation, IEEE Robot. Autom. Lett., 5 (2020), 2943–2949. https://doi.org/10.1109/LRA.2020.2974445 doi: 10.1109/LRA.2020.2974445
    [76] J. E. Siegel, S. Pratt, Y. Sun, S. E. Sarma, Real-time deep neural networks for internet-enabled arc-fault detection, Eng. Appl. Artif. Intell., 74 (2018), 35–42. https://doi.org/10.1016/j.engappai.2018.05.009 doi: 10.1016/j.engappai.2018.05.009
    [77] S. Zhang, N. Qu, T. Zheng, C. Hu, Series arc fault detection based on wavelet compression reconstruction data enhancement and deep residual network, IEEE Trans. Instrum. Meas., 71 (2022), 1–9. https://doi.org/10.1109/TIM.2022.3158990 doi: 10.1109/TIM.2022.3158990
    [78] D. D. Patil, S. Bindu, Arc fault detection in dc microgrid using deep neural network, in 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), (2021), 1–6. https://doi.org/10.1109/ICNTE51185.2021.9487585
    [79] W. Qi, S. E. Ovur, Z. Li, A. Marzullo, R. Song, Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network, IEEE Robot. Autom. Lett., 6 (2021), 6039–6045. https://doi.org/10.1109/LRA.2021.3089999 doi: 10.1109/LRA.2021.3089999
    [80] W. Qi, N. Wang, H. Su, A. Aliverti, Dcnn based human activity recognition framework with depth vision guiding, Neurocomputing, 486 (2022), 261–271. https://doi.org/10.1016/j.neucom.2021.11.044 doi: 10.1016/j.neucom.2021.11.044
    [81] J. Chen, Z. Chen, C. Yao, H. Qiao, Neural manifold modulated continual reinforcement learning for musculoskeletal robots, IEEE Trans. Cogn. Develop. Syst.. https://doi.org/10.1109/TCDS.2022.3231055
    [82] S. Lu, T. Sirojan, B. Phung, D. Zhang, E. Ambikairajah, DA-DCGAN: An effective methodology for dc series arc fault diagnosis in photovoltaic systems, IEEE Access, 7 (2019), 45831–45840. https://doi.org/10.1109/ACCESS.2019.2909267 doi: 10.1109/ACCESS.2019.2909267
    [83] R. Chu, P. Schweitzer, R. Zhang, Series AC arc fault detection method based on high-frequency coupling sensor and convolution neural network, Sensors, 20 (2020), 4910. https://doi.org/10.3390/s20174910 doi: 10.3390/s20174910
    [84] Y. Wang, L. Hou, K. C. Paul, Y. Ban, C. Chen, T. Zhao, Arcnet: Series ac arc fault detection based on raw current and convolutional neural network, IEEE Trans. Ind. Inf., 18 (2021), 77–86. https://doi.org/10.1109/tii.2021.3069849 doi: 10.1109/tii.2021.3069849
    [85] Z. Qi, X. Qi, W. Gao, W. Ying, Arc-fault detection using one-dimension convolution neural network, in 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), (2022), 488–495. https://doi.org/k10.1109/WCMEIM56910.2022.10021487
    [86] K. Yang, R. Chu, R. Zhang, J. Xiao, R. Tu, A novel methodology for series arc fault detection by temporal domain visualization and convolutional neural network, Sensors, 20 (2019), 162. https://doi.org/10.3390/s20010162 doi: 10.3390/s20010162
    [87] Q. Yu, G. Huang, Y. Yang, Low voltage ac series arc fault detection method based on parallel deep convolutional neural network, in IOP Conference Series: Materials Science and Engineering, 490, (2019), 072020. https://doi.org/10.1088/1757-899X/490/7/072020
    [88] Q. Yu, J. Xu, Y. Yang, Series arc fault detection of complex branch based on CNN-LSTM model, in 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), 12244, (2022), 1014–1022. https://doi.org/10.1117/12.2635185
    [89] N. Qu, J. Zuo, J. Chen, Z. Li, Series arc fault detection of indoor power distribution system based on lvq-nn and pso-svm, IEEE Access, 7 (2019), 184020–184028. https://doi.org/10.1109/ACCESS.2019.2960512 doi: 10.1109/ACCESS.2019.2960512
    [90] H. Lala, S. Karmakar, Detection and experimental validation of high impedance arc fault in distribution system using empirical mode decomposition, IEEE Syst. J., 14 (2020), 3494–3505. https://doi.org/10.1109/JSYST.2020.2969966 doi: 10.1109/JSYST.2020.2969966
    [91] K. Li, S. Zhao, Y. Wang, A planar location method for DC arc faults using dual radiation detection points and DANN, IEEE Trans. Instrum. Meas., 69 (2020), 5478–5487. https://doi.org/10.1109/TIM.2020.2966311 doi: 10.1109/TIM.2020.2966311
    [92] X. Chen, W. Gao, C. Hong, Y. Tu, A novel series arc fault detection method for photovoltaic system based on multi-input neural network, Int. J. Electr. Power Energy Syst., 140 (2022), 108018. https://doi.org/10.1016/j.ijepes.2022.108018 doi: 10.1016/j.ijepes.2022.108018
    [93] Y. Wang, F. Zhang, X. Zhang, S. Zhang, Series AC arc fault detection method based on hybrid time and frequency analysis and fully connected neural network, IEEE Trans. Ind. Inf., 15 (2018), 6210–6219. https://doi.org/10.1109/TII.2018.2885945 doi: 10.1109/TII.2018.2885945
    [94] Y. Wang, F. Zhang, S. Zhang, A new methodology for identifying arc fault by sparse representation and neural network, IEEE Trans. Instrum. Meas., 67 (2018), 2526–2537. https://doi.org/10.1109/TIM.2018.2826878 doi: 10.1109/TIM.2018.2826878
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4590) PDF downloads(612) Cited by(55)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog