Review Topical Sections

A comprehensive study on structure, properties, synthesis and characterization of ferrites

  • Received: 11 September 2020 Accepted: 18 November 2020 Published: 02 December 2020
  • The research on ferrites is fast moving owing to their exponentially growing usage in magnetic shielding, magnetic biosensors, magnetic recording devices, information storage, mobile communication, electronic devices, gyromagnetic device, medical devices, transformers, pollution control, catalysis, and pigments. This review comprises the present state of the art on hexagonal ferrites (HFs) and spinel ferrites (SFs). The article covers the background, properties, classification schemes, synthesis and characterization of ferrites. It focuses on a comparative understanding of four synthesis routes, magnetic properties and characterization of the ferrites. The article emphases X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, spectroscopy, thermal analysis and vector network analyser results. The present work is meant for the faster understanding of this research area.

    Citation: Ajitanshu Vedrtnam, Kishor Kalauni, Sunil Dubey, Aman Kumar. A comprehensive study on structure, properties, synthesis and characterization of ferrites[J]. AIMS Materials Science, 2020, 7(6): 800-835. doi: 10.3934/matersci.2020.6.800

    Related Papers:

  • The research on ferrites is fast moving owing to their exponentially growing usage in magnetic shielding, magnetic biosensors, magnetic recording devices, information storage, mobile communication, electronic devices, gyromagnetic device, medical devices, transformers, pollution control, catalysis, and pigments. This review comprises the present state of the art on hexagonal ferrites (HFs) and spinel ferrites (SFs). The article covers the background, properties, classification schemes, synthesis and characterization of ferrites. It focuses on a comparative understanding of four synthesis routes, magnetic properties and characterization of the ferrites. The article emphases X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, spectroscopy, thermal analysis and vector network analyser results. The present work is meant for the faster understanding of this research area.


    加载中


    [1] Adam JD, Davis LE, Dionne GF, et al. (2002) Ferrite devices and materials. IEEE T Microw Theory 50: 721-737.
    [2] Pullar RC (2012) Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57: 1191-1334.
    [3] Dairy ARA, Al-Hmoud LA, Khatatbeh HA (2019) Magnetic and structural properties of barium hexaferrite nanoparticles doped with titanium. Symmetry 11: 732.
    [4] Snelling EC (1988) Soft Ferrites, Properties and Applications, Butterworth-Heinemann Ltd.
    [5] Smit J, Wijn HPJ (1959) Ferrites, Eindhoven: Philips Technical Library, 150.
    [6] Issa B, Obaidat I, Albiss B, et al. (2013) Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int J Mol Sci 14: 21266-21305.
    [7] Ammar S, Helfen A, Jouini N, et al. (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11: 186-192.
    [8] Šutka A, Gross KA (2016) Spinel ferrite oxide semiconductor gas sensors. Sensor Actuat B-Chem 222: 95-105.
    [9] Veena M, Somashekarappa A, Shankaramurthy GJ, et al. (2016) Effect of 60Co gamma irradiation on dielectric and complex impedance properties of Dy3+ substituted Ni-Zn nanoferrites. J Magn Magn Mater 419: 375-385.
    [10] Krishnan V, Selvan RK, Augustin CO, et al. (2007) EXAFS and XANES investigations of CuFe2O4 Nanoparticles and CuFe2O4-MO2 (M = Sn, Ce) Nanocomposites. J Phys Chem C 111: 16724-16733.
    [11] Vaidyanathan G, Sendhilnathan S (2008) Characterization of Co1-xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Physica B 403: 2157-2167.
    [12] Valenzuela R (2012) Novel applications of ferrites. Phys Res Int 2012: 591839.
    [13] Kaur M, Kaur N, Verma V (2016) Ferrites: synthesis and applications for environmental remediation, Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, American Chemical Society, 1238: 113-136.
    [14] Haspers JM (1962) Ferrites: Their properties and applications, In: Hausner HH, Modern Materials, Elsevier, 3: 259-341.
    [15] Shaikh PA, Kambale RC, Rao AV, et al. (2010) Structural, magnetic and electrical properties of Co-Ni-Mn ferrites synthesized by co-precipitation method. J Alloy Compd 492: 590-596.
    [16] Jaswal L, Singh B (2014) Ferrite materials: A chronological review. J Int Sci Technol 2: 69-71.
    [17] Saville P (2005) Review of radar absorbing materials. Defence Research and Development Atlantic Dartmouth (Canada). Available from: https://www.researchgate.net/publication/235178242_Review_of_Radar_Absorbing_Materials.
    [18] Meng F, Wang H, Huang F, et al. (2018) Graphene-based microwave absorbing composites: A review and prospective. Compos Part B-Eng 137: 260-277.
    [19] Abu-Dief AM, Abdel-Fatah SM (2018) Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. BJBAS 7: 55-67.
    [20] Kharisov BI, Dias HR, Kharissova OV (2019) Mini-review: Ferrite nanoparticles in the catalysis. Arab J Chem 12: 1234-1246.
    [21] Kefeni KK, Mamba BB, Msagati TAM (2017) Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Sep Purif Technol 188: 399-422.
    [22] Kumar M, Dosanjh HS, Singh J, et al. (2020) Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications. Environ Sci-Water Res 6: 491-514.
    [23] Reddy DHK, Yun YS (2016) Spinel ferrite magnetic adsorbents: Alternative future materials for water purification. Coordin Chem Rev 315: 90-111.
    [24] Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14: 330-338.
    [25] Shokrollahi H, Khorramdin A, Isapour G (2014) Magnetic resonance imaging by using nano-magnetic particles. J Magn Magn Mater 369: 176-183.
    [26] Pegoretti VCB, Couceiro PRC, Gonçalves CM, et al. (2010) Preparation and characterization of tin-doped spinel ferrite. J Alloy Compd 505: 125-129.
    [27] Shokrollahi H, Avazpour L (2016) Influence of intrinsic parameters on the particle size of magnetic spinel nanoparticles synthesized by wet chemical methods. Particuology 26: 32-39.
    [28] Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mate 368: 207-229.
    [29] Sechovsky V (2001) Magnetism in solids: General introduction, In: Jürgen Buschow KH, Cahn RW, Flemings MC, et al., Encyclopedia of Materials: Science and Technology, Elsevier, 5018-5032.
    [30] Gregersen E (2011) The Britannica Guide to Electricity and Magnetism, New York: Britannica Educational Publishing and Rosen Educational Services.
    [31] Ferrimagnetism, Engineering LibreTexts (2020) Avaliable from: https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Magnetic_Properties/Ferrimagnetism.
    [32] Cullity BD, Graham CD (2008) Introduction to Magnetic Materials, 2 Eds., Wiley-IEEE Press.
    [33] Hench LL, West JK (1990) Principles of Electronic Ceramics, Wiley.
    [34] Biagioni C, Pasero M (2014) The systematics of the spinel-type minerals: An overview. Am Mineral 99: 1254-1264.
    [35] Spinel: mineral, Encyclopedia Britannica (2020) Available from: https://www.britannica.com/science/spinel.
    [36] Mineral gallery—The spinel group. Avaliable from: http://www.galleries.com/spinel_group.
    [37] Biagioni C, Pasero M (2014) The systematics of the spinel-type mineralas: An overview. Am Mineral 99: 1254-1264.
    [38] About: cuprospinel. Avaliable from: http://dbpedia.org/page/Cuprospinel.
    [39] Nickel EH (1973) The new mineral cuprospinel (CuFe2O4) and other spinels from an oxidized ore dump at Baie Verte, Newfoundland. Can Mineral 11: 1003-1007.
    [40] Pekov IV, Sandalov FD, Koshlyakova NN, et al. (2018) Copper in natural oxide spinels: The new mineral thermaerogenite CuAl2O4, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals 8: 498.
    [41] Fleischer M, Mandarino JA (1974) New mineral names. Am Mineral 59: 381-384.
    [42] Manju BG, Raji P (2018) Synthesis and magnetic properties of nano-sized Cu0.5Ni0.5Fe2O4 via citrate and aloe vera: A comparative study. Ceram Int 44: 7329-7333.
    [43] Liu Y, Wu Y, Zhang W, et al. (2017) Natural CuFe2O4 mineral for solid oxide fuel cells. Int J Hydrogen Energ 42: 17514-17521.
    [44] Estrella M, Barrio L, Zhou G, et al. (2009) In situ characterization of CuFe2O4 and Cu/Fe3O4 water-gas shift catalysts. J Phys Chem C 113: 14411-14417.
    [45] The mineral Franklinite. Avaliable from: http://www.galleries.com/Franklinite.
    [46] Abdulaziz A, Wael HA, Kirk S, et al. (2020) Novel franklinite-like synthetic zinc-ferrite redox nanomaterial: synthesis, and evaluation for degradation of diclofenac in water. Appl Catal B-Environ 275: 119098.
    [47] Lucchesi S, Russo U, Giusta AD (1999) Cation distribution in natural Zn-spinels: franklinite. Eur J Mineral 11: 501-512.
    [48] Palache C (1935) The Minerals of Franklin and Sterling Hill, Sussex County, New Jersey, US Government Printing Office.
    [49] Jacobsite. Avaliable from: https://www.mindat.org/min-2061.html.
    [50] Deraz NM, Alarifi A (2012) Novel preparation and properties of magnesioferrite nanoparticles. J Anal Appl Pyrol 97: 55-61.
    [51] Magnesioferrite. Avaliable from: https://www.mindat.org/min-2501.html.
    [52] Banerjee SK, Moskowitz BM (1985) Ferrimagnetic properties of magnetite, In: Kirschvink JL, Jones DS, MacFadden BJ, Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism, Boston: Springer, 17-41.
    [53] Wasilewski P, Kletetschka G (1999) Lodestone: Natures only permanent magnet-What it is and how it gets charged. Geophys Res Lett 26: 2275-2278.
    [54] Blaney L (2007) Magnetite (Fe3O4): Properties, synthesis, and applications. Lehigh Rev 15: 33-81.
    [55] O'Driscoll B, Clay P, Cawthorn R, et al. (2014) Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon Accord, South Africa? Mineral Mag 78: 145-163.
    [56] About: Trevorite. Avaliable from: http://dbpedia.org/page/Trevorite.
    [57] de Paiva JAC, Graça MPF, Monteiro J, et al. (2009) Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water. J Alloy Compd 485: 637-641.
    [58] Mogensen F (1946) A ferro-ortho-titanate ore from Södra Ulvön. Geol Fören Stockh Förh 68: 578-587.
    [59] Ulvöspinel. Avaliable from: https://www.mindat.org/min-4089.html.
    [60] Rossiter MJ, Clarke PT (1965) Cation distribution in Ulvöspinel Fe2TiO4. Nature 207: 402-402.
    [61] Mineralienatlas —Fossilienatlas. Avaliable from: https://www.mineralienatlas.de/lexikon/index.php/MineralData?lang = de & mineral = Cuprospinel.
    [62] Magnetite. Avaliable from: https://www.mindat.org/min-2538.html.
    [63] Trevorite. Avaliable from: https://www.mindat.org/min-4012.html.
    [64] Bromho TK, Ibrahim K, Kabir H, et al. (2018) Understanding the impacts of Al+3-substitutions on the enhancement of magnetic, dielectric and electrical behaviors of ceramic processed nickel-zinc mixed ferrites: FTIR assisted studies. Mater Res Bull 97: 444-451.
    [65] Burdett JK, Price GD, Price SL (1982) Role of the crystal-field theory in determining the structures of spinels. J Am Chem Soc 104: 92-95.
    [66] Verwey EJW, Heilmann EL (1947) Physical properties and cation arrangement of oxides with spinel structures I. cation arrangement in spinels. J Chem Phys 15: 174-180.
    [67] Greenberg E, Rozenberg GK, Xu W, et al. (2009) On the compressibility of ferrite spinels: a high-pressure X-ray diffraction study of MFe2O4 (M = Mg, Co, Zn). High Pressure Res 29: 764-779.
    [68] Yadav RS, Havlica J, Hnatko M, et al. (2015) Magnetic properties of Co1-xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling. J Magn Magn Mater 378: 190-199.
    [69] Paramesh D, Kumar KV, Reddy PV (2016) Influence of nickel addition on structural and magnetic properties of aluminium substituted Ni-Zn ferrite nanoparticles. Process Appl Ceram 10: 161-167.
    [70] Antao SM, Hassan I, Parise JB (2005) Cation ordering in magnesioferrite, MgFe2O4, to 982 ℃ using in situ synchrotron X-ray powder diffraction. Am Mineral 90: 219-228.
    [71] O'neill H, St C (1992) Temperature dependence of the cation distribution in zinc ferrite (ZnFe2O4) from powder XRD structural refinements. Eur J Mineral 571-580.
    [72] Singh S, Ralhan NK, Kotnala RK, et al. (2012) Nanosize dependent electrical and magnetic properties of NiFe2O4 ferrite. IJPAP 50: 739-743.
    [73] Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6: 23.
    [74] Melagiriyappa E, Jayanna HS (2009) Structural and magnetic susceptibility studies of samarium substituted magnesium-zinc ferrites. J Alloy Compd 482: 147-150.
    [75] Morán E, Blesa MC, Medina ME, et al. (2002) Nonstoichiometric spinel ferrites obtained from α-NaFeO2 via molten media reactions. Inorg Chem 41: 5961-5967.
    [76] Lazarević ZŽ, Jovalekić Č, Sekulić D, et al. (2012) Characterization of nanostructured spinel NiFe2O4 obtained by soft mechanochemical synthesis. Sci Sinter 44: 331-339.
    [77] Sáez-Puche R, Fernández MJ, Blanco-gutiérrez V, et al. (2008) Ferrites nanoparticles MFe2O4 (M = Ni and Zn): Hydrothermal synthesis and magnetic properties. Bol Soc Esp Cerámica Vidr 47: 133-137.
    [78] Gözüak F, Köseoğlu Y, Baykal A, et al. (2009) Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321: 2170-2177.
    [79] Souriou D, Mattei JL, Chevalier A, et al. (2010) Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization. J Appl Phys 107: 09A518.
    [80] Went JJ, Rathenau GW, Gorter EW, et al. (1952) Hexagonal iron-oxide compounds as permanent-magnet materials. Phys Rev 86: 424-425.
    [81] Belrhazi H, Hafidi MYE, Hafidi ME (2019) Permanent magnets elaboration from BaFe12O19 hexaferrite material: Simulation and prototype. Res Dev Mater Sci 11: 1-5.
    [82] Stergiou CA, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405: 54-61.
    [83] Jotania R (2014) Crystal structure, magnetic properties and advances in hexaferrites: A brief review. AIP Conf Proc 1621: 596-599.
    [84] Mahmood SH, Al-Shiab Q, Bsoul I, et al. (2018) Structural and magnetic properties of (Mg, Co)2W hexaferrites. Curr Appl Phys 18: 590-598.
    [85] Izadkhah H, Zare S, Somu S, et al. (2017) Utilizing alternate target deposition to increase the magnetoelectric effect at room temperature in a single phase M-type hexaferrite. MRS Commun 7: 97-101.
    [86] Kitagawa Y, Hiraoka Y, Honda T, et al. (2010) Low-field magnetoelectric effect at room temperature. Nat Mater 9: 797-802.
    [87] Muleta G (2018) The study of optical, electrical and dielectric properties of cadmium and zinc substituted copper ferrite nanoparticles. Ethiopia: Arba Minch University.
    [88] Albanese G (1977) Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. J Phys Colloq 38: C1-85.
    [89] Maswadeh Y, Mahmood S, Awadallah A, et al. (2015) Synthesis and structural characterization of non-stoichiometric barium hexaferrite materials with Fe:Ba ratio of 11.5-16.16. IOP Conf Ser Mater Sci Eng 92: 23.
    [90] Kruželák J, Hudec I, Dosoudil R, et al. (2015) Investigation of strontium ferrite activity in different rubber matrices. J Elastom Plast 47: 277-290.
    [91] Wartewig P, Krause MK, Esquinazi P, et al. (1999) Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J Magn Magn Mater 192: 83-99.
    [92] Kanagesan S, Jesurani S, Velmurugan R, et al. (2012) Structural and magnetic properties of conventional and microwave treated Ni-Zr doped barium strontium hexaferrite. Mater Res Bull 47: 188-192.
    [93] Xia A, Zuo C, Chen L, et al. (2013) Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties. J Magn Magn Mater 332: 186-191.
    [94] Ghahfarokhi SM, Ranjbar F, Shoushtari MZ (2014) A study of the properties of SrFe12-xCoxO19 nanoparticles. J Magn Magn Mater 349: 80-87.
    [95] Nga TTV, Duong NP, Hien TD (2009) Synthesis of ultrafine SrLaxFe12-xO19 particles with high coercivity and magnetization by sol-gel method. J Alloy Compd 475: 55-59.
    [96] Zhang Z, Liu X, Wang X, et al. (2012) Electromagnetic and microwave absorption properties of Fe-Sr0.8La0.2Fe11.8Co0.2O19 shell-core composites. J Magn Magn Mater 324: 2177-2182.
    [97] Zhang Z, Liu X, Wang X, et al. (2012) Effect of Nd-Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites. J Alloy Compd 525: 114-119.
    [98] Chen N, Yang K, Gu M (2010) Microwave absorption properties of La-substituted M-type strontium ferrites. J Alloy Compd 490: 609-612.
    [99] Šepelák V, Myndyk M, Witte R, et al. (2014) The mechanically induced structural disorder in barium hexaferrite, BaFe12O19, and its impact on magnetism. Faraday Discuss 170: 121-135.
    [100] Yuan CL, Tuo YS (2013) Microwave adsorption of Sr(MnTi)xFe12-2xO19 particles. J Magn Magn Mater 342: 47-53.
    [101] Handoko E, Iwan S, Budi S, et al. (2018) Magnetic and microwave absorbing properties of BaFe12-2xCoxZnxO19 (x = 0.0; 0.2; 0.4; 0.6) nanocrystalline. Mater Res Express 5: 064003.
    [102] Mallick KK, Shepherd P, Green RJ (2007) Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation. J Magn Magn Mater 312: 418-429.
    [103] Liu Q, Liu Y, Wu C (2017) Investigation on Zn-Sn co-substituted M-type hexaferrite for microwave applications. J Magn Magn Mater 444: 421-425.
    [104] Tyagi S, Baskey HB, Agarwala RC, et al. (2011) Synthesis and characterization of microwave absorbing SrFe12O19/ZnFe2O4 nanocomposite. Trans Indian Inst Met 64: 607-614.
    [105] Tyagi S, Verma P, Baskey HB, et al. (2012) Microwave absorption study of carbon nano tubes dispersed hard/soft ferrite nanocomposite. Ceram Int 38: 4561-4571.
    [106] Sharbati A, Khani JMV, Amiri GR (2012) Microwave absorption studies of nanocrystalline SrMnx/2(TiSn)x/4Fe12-xO19 prepared by the citrate sol-gel method. Solid State Commun 152: 199-203.
    [107] Reddy NK, Mulay VN (2002) Magnetic properties of W-type ferrites. Mater Chem Phys 76: 75-77.
    [108] Ahmed MA, Okasha N, Kershi RM (2010) Dramatic effect of rare earth ion on the electrical and magnetic properties of W-type barium hexaferrites. Phys B Condens Matter 405: 3223-3233.
    [109] Ul-ain B, Zafar A, Ahmed S (2015) To explore a new class of material (X-type hexaferrites) for N2O decomposition. Catal Sci Technol 5: 1076-1083.
    [110] Ueda H, Shakudo H, Santo H, et al. (2018) Magnetocrystalline anisotropy of single crystals of M-, X-, and W-type strontium hexaferrites. J Phys Soc Jpn 87: 104706.
    [111] Mohebbi M, Vittoria C (2013) Growth of Y-type hexaferrite thin films by alternating target laser ablation deposition. J Magn Mag. Mater 344: 158-161.
    [112] Rama KK, Vijaya KK, Dachepalli R (2012) Structural and electrical conductivity studies in nickel-zinc ferrite. Adv Mater Phys Chem 2012: 23241.
    [113] M. Ben Ali et al. Effect of zinc concentration on the structural and magnetic properties of mixed Co-Zn ferrites nanoparticles synthesized by sol/gel method. J Magn Magn Mater 398: 20-25.
    [114] Raut AV, Barkule RS, Shengule DR, et al. (2014) Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J Magn Magn Mater 358-359: 87-92.
    [115] Mu G, Chen N, Pan X, et al. (2008) Preparation and microwave absorption properties of barium ferrite nanorods. Mater Lett 62: 840-842.
    [116] Li Y, Huang Y, Qi S, et al. (2012) Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite. Appl Surf Sci 258: 3659-3666.
    [117] Chen N, Mu G, Pan X, et al. (2007) Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders. Mater Sci Eng B 139: 256-260.
    [118] Chang S, Kangning S, Pengfei C (2012) Microwave absorption properties of Ce-substituted M-type barium ferrite. J Magn Magn Mater 324: 802-805.
    [119] Rane AV, Kanny K, Abitha VK, et al. (2018) Methods for synthesis of nanoparticles and sabrication of nanocomposites, In: Bhagyaraj MS, Oluwafemi OS, Kalarikkal N, et al., Synthesis of Inorganic Nanomaterials, Woodhead Publishing, 121-139.
    [120] Gu Y, Sang S, Huang K, et al. (2000) Synthesis of MnZn ferrite nanoscale particles by hydrothermal method. J Cent South Univ Technol 7: 37-39.
    [121] Xia A, Liu S, Jin C, et al. (2013) Hydrothermal Mg1-xZnxFe2O4 spinel ferrites: Phase formation and mechanism of saturation magnetization. Mater Lett 105: 199-201.
    [122] He HY (2011) Magnetic properties of Co0.5Zn0.5Fe2O4 nanoparticles synthesized by a template-assisted hydrothermal method. J Nanotechnol 2011: 182543.
    [123] Mostafa NY, Zaki ZI, Heiba ZK (2013) Structural and magnetic properties of cadmium substituted manganese ferrites prepared by hydrothermal route. J Magn Magn Mater 329: 71-76.
    [124] Köseoğlu Y, Alan F, Tan M, et al. (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38: 3625-3634.
    [125] Mostafa NY, Hessien MM, Shaltout AA (2012) Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites. J Alloy Compd 529: 29-33.
    [126] Rashad MM, Mohamed RM, Ibrahim MA, et al. (2012) Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv Powder Technol 23: 315-323.
    [127] Tyagi S, Agarwala RC, Agarwala V (2011) Reaction kinetic, magnetic and microwave absorption studies of SrFe11.2N0.8O19 hexaferrite nanoparticle. J Mater Sci-Mater El 22: 1085-1094.
    [128] Mattei JL, Huitema L, Queffelec P, et al. (2011) Suitability of Ni-Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas. IEEE T Magn 47: 3720-3723.
    [129] Moscoso-Londoñ o O, Tancredi PABLO, Muraca D, et al. (2017) Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems. J Magn Magn Mater 428: 105-118.
    [130] Harzali H, et al. (2016) Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation. J Magn Magn Mater 419: 50-56.
    [131] Iqbal MJ, Ashiq MN, Hernandez-Gomez P, et al. (2007) Magnetic, physical and electrical properties of Zr-Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scr Mater 57: 1093-1096.
    [132] Thanh NK, Loan TT, Anh LN, et al. (2016) Cation distribution in CuFe2O4 nanoparticles: Effects of Ni doping on magnetic properties. J Appl Phys 120: 142115.
    [133] Gomes JA, Sousa MH, Da Silva GJ, et al. (2006) Cation distribution in copper ferrite nanoparticles of ferrofluids: A synchrotron XRD and EXAFS investigation. J Magn Magn Mater 300: e213-e216.
    [134] Arulmurugan R, Vaidyanathan G, Sendhilnathan S, et al. (2006) Thermomagnetic properties of Co1-xZnxFe2O4 (x = 0.1-0.5) nanoparticles. J Magn Magn Mater 303: 131-137.
    [135] Arulmurugan R, Jeyadevan B, Vaidyanathan G, et al. (2005) Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-precipitation. J Magn Magn Mater 288: 470-477.
    [136] Gordani GR, Ghasemi A, Saidi A (2014) Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. Ceram Int 40: 4945-4952.
    [137] Baniasadi A, Ghasemi A, Nemati A, et al. (2014) Effect of Ti-Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite. J Alloy Compd 583: 325-328.
    [138] Modi KB, Shah SJ, Pujara NB, et al. (2013) Infrared spectral evolution, elastic, optical and thermodynamic properties study on mechanically milled Ni0.5Zn0.5Fe2O4 spinel ferrite. J Mol Struct 1049: 250-262.
    [139] Tehrani MK, Ghasemi A, Moradi M, et al. (2011) Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J Alloy Compd 509: 8398-8400.
    [140] Ohnishi H, Teranishi T (1961) Crystal distortion in copper ferrite-chromite series. J Phys Soc Jpn 16: 35-43.
    [141] Tachibana T, Nakagawa T, Takada Y, et al. (2003) X-ray and neutron diffraction studies on iron-substituted Z-type hexagonal barium ferrite: Ba3Co2-xFe24+xO41 (x = 0-0.6). J Magn Magn Mater 262: 248-257.
    [142] Sözeri H, Deligöz H, Kavas H, et al. (2014) Magnetic, dielectric and microwave properties of M-Ti substituted barium hexaferrites (M = Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram Int 40: 8645-8657.
    [143] González-Angeles A, Mendoza-Suarez G, Grusková A, et al. (2005) Magnetic studies of Zn-Ti-substituted barium hexaferrites prepared by mechanical milling. Mater Lett 59: 26-31.
    [144] Zou H, Li S, Zhang L, et al. (2011) Determining factors for high performance silicone rubber microwave absorbing materials. J Magn Magn Mater 323: 1643-1651.
    [145] Lixi W, Qiang W, Lei M, et al. (2007) Influence of Sm3+ substitution on microwave magnetic performance of barium hexaferrites. J Rare Earth 25: 216-219.
    [146] Ghasemi A, Hossienpour A, Morisako A, et al. (2008) Investigation of the microwave absorptive behavior of doped barium ferrites. Mater Design 29: 112-117.
    [147] Choopani S, Keyhan N, Ghasemi A, et al. (2009) Static and dynamic magnetic characteristics of BaCo0.5Mn0.5Ti1.0Fe10O19. J Magn Magn Mater 321: 1996-2000.
    [148] Pradhan AK, Saha S, Nath TK (2017) AC and DC electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2-xMoxO4 (x  =   0.0, 0.1 and 0.2) ferrites. Appl Phys A-Mater 123: 715.
    [149] Silva LG, Solis-Pomar F, Gutiérrez-Lazos CD, et al. (2014) Synthesis of Fe nanoparticles functionalized with oleic acid synthesized by inert gas condensation. J Nanomater 2014: 643967.
    [150] Zheng X, Yu SH, Sun R, et al. (2012) Microstructure and properties of ferrite/organic nanocomposite prepared with microemulsion method. Maters Sci Forum 722: 31-38.
    [151] Košak A, Makovec D, Žnidaršič A, et al. (2004) Preparation of MnZn-ferrite with microemulsion technique. J Eur Ceram Soc 24: 959-962.
    [152] Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab J Chem 5: 397-417.
    [153] Mazario E, Herrasti P, Morales MP, et al. (2012) Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23: 355708.
    [154] Rivero M, del Campo A, Mayoral A, et al. (2016) Synthesis and structural characterization of ZnxFe3-xO4 ferrite nanoparticles obtained by an electrochemical method. RSC Adv 6: 40067-40076.
    [155] Saba A, Elsayed E, Moharam M, et al. (2012) Electrochemical synthesis of nanocrystalline Ni0.5Zn0.5Fe2O4 thin film from aqueous sulfate bath. ISRN 2012: 532168.
    [156] Bremer M, Fischer ST, Langbein H, et al. (1992) Investigation on the formation of manganese-zinc ferrites by thermal decomposition of solid solution oxalates. Thermochim Acta 209: 323-330.
    [157] Angermann A, Töpfer J, Silva K, et al. (2010) Nanocrystalline Mn-Zn ferrites from mixed oxalates: Synthesis, stability and magnetic properties. J Alloy Compd 508: 433-439.
    [158] Li D, Herricks T, Xia Y (2003) Magnetic nanofibers of nickel ferrite prepared by electrospinning. Appl Phys Lett 83: 4586-4588.
    [159] Na KH, Kim WT, Park DC, et al. (2018) Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process. Thin Solid Films 660: 358-364.
    [160] Nam JH, Joo YH, Lee JH, et al. (2009) Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J Magn Magn Mater 321: 1389-1392.
    [161] Phulé PP, Wood TE (2001) Ceramics and glasses, sol-gel synthesis of, In: Buschow KHJ, Cahn RW, Flemings MC, et al., 2 Eds., Encyclopedia of Materials: Science and Technology, Oxford: Elsevier, 1090-1095.
    [162] Peterson DS (2013) Sol-gel technique, In: Li D, Encyclopedia of Microfluidics and Nanofluidics, New York: Springer Science + Business Media, 1-7.
    [163] Muresan LM (2015) Corrosion protective coatings for Ti and Ti alloys used for biomedical implants, In: Tiwari A, Rawlins J, Hihara LH, Intelligent Coatings for Corrosion Control, Boston: Butterworth-Heinemann, 585-602.
    [164] Xu P (2001) Polymer-ceramic nanocomposites: ceramic phases, In: Buschow KHJ, Cahn RW, Flemings MC, et al., Encyclopedia of Materials: Science and Technology, Oxford: Elsevier, 7565-7570.
    [165] Allaedini G, Tasirin SM, Aminayi P (2015) Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int Nano Lett 5: 183-186.
    [166] Gan YX, Jayatissa AH, Yu Z, et al. (2020) Hydrothermal synthesis of nanomaterials. J Nanomater 2020: 8917013.
    [167] O'Hare D (2001) Hydrothermal synthesis, In: Buschow KHJ, Cahn RW, Flemings MC, et al., Encyclopedia of Materials: Science and Technology, Oxford: Elsevier, 3989-3992.
    [168] Kumar A, Nanda D (2019) Methods and fabrication techniques of superhydrophobic surfaces, In: Samal SK, Mohanty S, Nayak SK, Superhydrophobic Polymer Coatings, Elsevier, 43-75.
    [169] Liu S, Ma C, Ma MG, et al. (2019) Magnetic nanocomposite adsorbents, In: Kyzas GZ, Mitropoulos AC, Composite Nanoadsorbents, Elsevier, 295-316.
    [170] Šepelák V, Bergmann I, Feldhoff A, et al. (2007) Nanocrystalline nickel ferrite, NiFe2O4:  Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behaviour. J Phys Chem C 111: 5026-5033.
    [171] Rao CNR, Biswas K (2015) Ceramic methods, Essentials of Inorganic Materials Synthesis, John Wiley & Sons, 17-21.
    [172] Chatterjee AK (2001) X-ray diffraction, In: Ramachandran VS, Beaudoin JJ, Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications, Norwich, New York: William Andrew Publishing, 275-332.
    [173] Sudha D, Dhanapandian S, Manoharan C, et al. (2016) Structural, morphological and electrical properties of pulsed electrodeposited CdIn2Se4 thin films. Results Phys 6: 599-605.
    [174] Kumar A, Agarwala V, Singh D (2013) Effect of particle size of BaFe12O19 on the microwave absorption characteristics in X-band. Prog Electromagn Res 29: 223-236.
    [175] Kambale RC, Adhate NR, Chougule BK, et al. (2010) Magnetic and dielectric properties of mixed spinel Ni-Zn ferrites synthesized by citrate-nitrate combustion method. J Alloy Compd 491: 372-377.
    [176] Singhal S, Singh J, Barthwal SK, et al. (2005) Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1-xNixFe2O4). J Solid State Chem 178: 3183-3189.
    [177] Tyagi S, Baskey HB, Agarwala RC, et al. (2011) Reaction kinetic, magnetic and microwave absorption studies of SrFe12O19/CoFe2O4 ferrite nanocrystals. Trans Indian Inst Met 64: 271-277.
    [178] Swamy PP, Basavaraja S, Lagashetty A, et al. (2011) Synthesis and characterization of zinc ferrite nanoparticles obtained by self-propagating low-temperature combustion method. Bull Mater Sci 34: 1325-1330.
    [179] Sharma R, Agarwala RC, Agarwala V (2008) Development of radar absorbing nano crystals by microwave irradiation. Mater Lett 62: 2233-2236.
    [180] Thakur A, Singh RR, Barman PB (2013) Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J Magn Magn Mater 326: 35-40.
    [181] Tang X, Yang Y, Hu K (2009) Structure and electromagnetic behavior of BaFe12-2x(Ni0.8Ti0.7)xO19-0.8x in the 2-12 GHz frequency range. J Alloy Compd 477: 488-492.
    [182] Sigh P, Andola HC, Rawat MSM, et al. (2011) Fourier transform infrared (FT-IR) spectroscopy in an-overview. Res J Med Plants 5: 127-135.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(25201) PDF downloads(2459) Cited by(76)

Article outline

Figures and Tables

Figures(16)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog