Research article Special Issues

An improved spotted hyena optimizer for PID parameters in an AVR system

  • Received: 26 March 2020 Accepted: 17 May 2020 Published: 25 May 2020
  • In this paper, an improved spotted hyena optimizer (ISHO) with a nonlinear convergence factor is proposed for proportional integral derivative (PID) parameter optimization in an automatic voltage regulator (AVR). In the proposed ISHO, an opposition-based learning strategy is used to initialize the spotted hyena individual's position in the search space, which strengthens the diversity of individuals in the global searching process. A novel nonlinear update equation for the convergence factor is used to enhance the SHO's exploration and exploitation abilities. The experimental results show that the proposed ISHO algorithm performed better than other algorithms in terms of the solution precision and convergence rate.

    Citation: Guo Zhou, Jie Li, Zhonghua Tang, Qifang Luo, Yongquan Zhou. An improved spotted hyena optimizer for PID parameters in an AVR system[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3767-3783. doi: 10.3934/mbe.2020211

    Related Papers:

  • In this paper, an improved spotted hyena optimizer (ISHO) with a nonlinear convergence factor is proposed for proportional integral derivative (PID) parameter optimization in an automatic voltage regulator (AVR). In the proposed ISHO, an opposition-based learning strategy is used to initialize the spotted hyena individual's position in the search space, which strengthens the diversity of individuals in the global searching process. A novel nonlinear update equation for the convergence factor is used to enhance the SHO's exploration and exploitation abilities. The experimental results show that the proposed ISHO algorithm performed better than other algorithms in terms of the solution precision and convergence rate.



    加载中


    [1] G. Huang, T. Li, Q. Lu, Artificial memory-based optimization, Syst. Eng. Theory Pract., 11 (2014), 2900-2912.
    [2] S. Rahnamayan, G. Wang, Solving large scale optimization problems by opposition-based differential evolution (ODE), WSEAS Trans. Comput., 7 (2008), 1792-1804.
    [3] R. Rao, V. Savsani, D. Vakharia, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43 (2011), 303-315. doi: 10.1016/j.cad.2010.12.015
    [4] E. Sayed, D. Essam, R. Sarker, S. Elsayed, Decomposition-based evolutionary algorithm for large scale constrained problems, Inf. Sci., 316 (2015), 457-486. doi: 10.1016/j.ins.2014.10.035
    [5] P. Mohapatra, K. Das, S. Roy, A modified competitive swarm optimizer for large scale optimization problems, Appl. Soft Comput., 59 (2017), 340-362. doi: 10.1016/j.asoc.2017.05.060
    [6] D. Tang, Y. Cai, J. Zhao, Y. Xue, A Quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems, Inf. Sci., 289 (2014), 162-189. doi: 10.1016/j.ins.2014.08.030
    [7] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, M. Ventresca, Enhancing particle swarm optimization using generalized opposition-based learning, Inf. Sci., 181 (2011), 4699-4714. doi: 10.1016/j.ins.2011.03.016
    [8] H. Ismkhan, Effective Heuristics for ant colony optimization to handle large-scale problems, Swarm Evol. Comput., 32 (2017), 140-149. doi: 10.1016/j.swevo.2016.06.006
    [9] Y Zhou, F. Miao, Q Luo, Symbiotic organisms search algorithm for optimal evolutionary controller tuning of fractional fuzzy controllers, Appl. Soft Comput. 77 (2019), 497-508 doi: 10.1016/j.asoc.2019.02.002
    [10] Z. Yang, Z. Chen, Z. Fan, X. Li, A Tuning of PID controller based on improved particle-swarm optimization, Control Theory Appl., 27 (2010), 1345-1352
    [11] L. Echevarría, O. Santiago, J. Fajardo, A. Silva Neto, D. Sánchez, A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation, Eng. Appl. Artif. Intell., 28 (2014), 36-51. doi: 10.1016/j.engappai.2013.11.007
    [12] J. Jiang, Y. Xue, Q. Yang, Combined algorithm for PID tuning based on genetic algorithm and direct search, Comput. Simul., 12 (2005), 139-142.
    [13] Y. Zhou, J. Zhang, X. Yang, Y. Ling, Optimization of PID controller based on water wave optimization for an automatic voltage regulator system, Inf. Technol. Control, 48 (2019), 160-171.
    [14] P. B. de Moura Oliveira, E. J. S. Pires, P. Novais, Design of Posicast PID control systems using a gravitational search algorithm, Neurocomputing, 167 (2015), 18-23 doi: 10.1016/j.neucom.2014.12.101
    [15] G. Q. Zeng, J. Chen, M. R. Chen, Y. X. Dai, L. M. Li, K. D. Lu, et al., Design of multivariable PID controllers using real-coded population-based extremal optimization, Neurocomputing, 151 (2015), 1343-1353 doi: 10.1016/j.neucom.2014.10.060
    [16] A. Belkadi, H. Oulhadj, Y. Touati, S. A. Khan, B. Daachi, On the robust PID adaptive controller for exoskeletons: A particle swarm optimization based approach, Appl. Soft Comput., 60 (2017), 87-100 doi: 10.1016/j.asoc.2017.06.012
    [17] M. Gheisarnejad. An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control, Appl. Soft Comput., 65 (2018), 121-138. doi: 10.1016/j.asoc.2018.01.007
    [18] A. Moharam, M. A. El-Hosseini, H. A. Ali, Design of optimal PID controller using hybrid differential evolution and particle swarm optimization with an aging leader and challengers, Appl. Soft Comput., 38 (2016), 727-737 doi: 10.1016/j.asoc.2015.10.041
    [19] G. Dhiman, V. Kumar, Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Software, 114 (2017), 48-70. doi: 10.1016/j.advengsoft.2017.05.014
    [20] N. Panda, S. K. Majhi, Improved spotted hyena optimizer with space transformational search for training pi-sigma higher order neural network, Comput. Intell., 36 (2020), 320-350. doi: 10.1111/coin.12272
    [21] H. Moayedi, D. T. Bui, D. Anastasios, B. Kalantar, Spotted Hyena Optimizer and Ant Lion Optimization in Predicting the Shear Strength of Soil, Appl. Sci. Basel, 9 (2019), 2.
    [22] Q. Luo, J. Li, Y. Zhou. Spotted hyena optimizer with lateral inhibition for image matching, Multimedia Tools Appl., 78 (2019), 34277-34296. doi: 10.1007/s11042-019-08081-3
    [23] G. Dhiman, V. Kumar. Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm for engineering problems, Knowl. Based Syst., 150 (2018), 175-197. doi: 10.1016/j.knosys.2018.03.011
    [24] G. Dhiman, S. Guo, S. Kaur, ED-SHO: A framework for solving nonlinear economic load power dispatch problem using spotted hyena optimizer, Mod. Phys. Lett. A, 33 (2018), 1850239. doi: 10.1142/S0217732318502395
    [25] Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, X. Zhang, Enhanced Moth-flame optimizer with mutation strategy for global optimization, Inf. Sci., 492 (2019), 181-203. doi: 10.1016/j.ins.2019.04.022
    [26] P. Hu, J. Pan, S. Chu, Improved Binary Grey Wolf Optimizer and Its application for feature selection, Knowl. Based Syst., 195 (2020), 105746. doi: 10.1016/j.knosys.2020.105746
    [27] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849-872. doi: 10.1016/j.future.2019.02.028
    [28] H. Chen, Q. Zhang, J. Luo, Y. Xu, X. Zhang, An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine, Appl. Soft Comput., 86 (2020), 105884. doi: 10.1016/j.asoc.2019.105884
    [29] T. T. Nguyen, J. S. Pan, T. Dao, An improved flower pollination algorithm for optimizing layouts of nodes in wireless sensor network, IEEE Access, 7 (2019), 75985-75998. doi: 10.1109/ACCESS.2019.2921721
    [30] A. Ilany, A. Booms, K. Holekamp, Topological effects of network structure on long-term social network dynamics in a wild mammal, Ecol. Lett., 18 (2015), 687-695. doi: 10.1111/ele.12447
    [31] R. Haupt, S. Haupt, Practical genetic algorithms, second edition, New York, John Wiley & Sons, Inc. 2004.
    [32] X. Gao, X. Wang, S. J. Ovaska, K. Zenger, A hybrid optimization method of harmony search and opposition-based learning, Eng. Optim., 44 (2012), 895-914. doi: 10.1080/0305215X.2011.628387
    [33] H. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, International Conference on Intelligent Agents, IEEE, 2005,695-701. Available from: https://ieeexplore.ieee.org/abstract/document/1631345.
    [34] M. Omran, S. Al-Sharhan, Using Opposition-based learning to improve the performance of particle swarm optimization, 2008 IEEE Swarm Intelligence Symposium, 2008, 1-6. Available from: https://ieeexplore.ieee.org/abstract/document/4668288.
    [35] M. A. Ahandani, H. Alavi-Rad, Opposition-based learning in the shuffled differential evolution algorithm, Appl. Math. Comput., 16 (2012), 1303-1337.
    [36] M. Enns, Electric Energy Systems Theory, IEEE Trans. Autom. Control, 17 (1972), 749-750. doi: 10.1109/TAC.1972.1100141
    [37] H. Gozde, M. C. Taplamacioglu, Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system, J. Franklin Inst., 348 (2011), 1927-1946. doi: 10.1016/j.jfranklin.2011.05.012
    [38] L. Coelho, Tuning of PID Controller for an automatic regulator voltage system using chaotic optimization approach, Chaos Solitons Fractals, 39 (2009), 1504-1514. doi: 10.1016/j.chaos.2007.06.018
    [39] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math. Comput., 214 (2009), 108-132.
    [40] S. Mirjalili, S. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [41] S. Mirjalili, S. Hashim, A new hybrid PSO + GSA algorithm for function optimization International Conference on Computer and Information Application, 2010 International Conference on Computer and Information Application, 2012,374-377. Available from: https://ieeexplore.ieee.org/abstract/document/6141614.
    [42] X. Yang, Flower pollination algorithm for global optimization, International Conference on Unconventional Computing and Natural Computation, 2012,242-243. Available from: https://link.springer.com/chapter/10.1007/978-3-642-32894-7_27.
    [43] S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl. Based Syst., 96 (2016), 120-133. doi: 10.1016/j.knosys.2015.12.022
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(14572) PDF downloads(317) Cited by(19)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog