Research article Special Issues

Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

  • Received: 14 June 2015 Accepted: 26 August 2015 Published: 31 August 2015
  • Via Dissipative Particle Dynamics (DPD) and implicit solvent coarse-grained (CG) Molecular Dynamics (MD) we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

    Citation: Michael Sebastiano, Xiaolei Chu, Fikret Aydin, Leebyn Chong, Meenakshi Dutt. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles[J]. AIMS Materials Science, 2015, 2(3): 303-318. doi: 10.3934/matersci.2015.3.303

    Related Papers:

  • Via Dissipative Particle Dynamics (DPD) and implicit solvent coarse-grained (CG) Molecular Dynamics (MD) we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.


    加载中
    [1] Alberts B, Johnson A, Lewis J, et al. (2007) Molecular Biology of the Cell, Garland Science: New York.
    [2] Brannigan G, Brown FLH (2005) Composition Dependence of Bilayer Elasticity. J Chem Phys 122: 07490.
    [3] Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117: 5048-5061.
    [4] Lipowsky R, Sackmann E (1995) Structure and dynamics of membranes, Handbook of biological physics, Elsevier, Amsterdam.
    [5] Petelska AD, Figaszewski ZA (2002) Effect of pH on the Interfacial Tension of Lipid Bilayer Membrane. Biophys J 1561:135-146.
    [6] Cooke IR, Kremer K, Deserno M (2005) Tunable Generic Model for Fluid Bilayer Membranes. Phys Rev E 72: 011506. doi: 10.1103/PhysRevE.72.011506
    [7] Laradji M, Kumar PBS (2004) Dynamics of Domain Growth in Self-assembled Fluid Vesicles. Phys Rev Lett 93: 198105. doi: 10.1103/PhysRevLett.93.198105
    [8] Laradji M, Kumar PBS (2005) Domain Growth, Budding, and Fission in Phase Separating Self-assembled Fluid Bilayers. J Chem Phys 123: 224902. doi: 10.1063/1.2102894
    [9] Ramachandran S, Laradji M, Kumar PBS (2009) Lateral Organization of Lipids in Multi-component Liposomes. J Phys Soc Jpn 78: 041006. doi: 10.1143/JPSJ.78.041006
    [10] Taniguchi T (1996) Shape Deformation and Phase Separation Dynamics of Two-component Vesicles. Phys Rev Lett 76: 4444-4447. doi: 10.1103/PhysRevLett.76.4444
    [11] Fan J, Han T, Haataja M (2010) Hydrodynamic Effects on Spinodal Decomposition Kinetics in Planar Lipid Bilayer Membranes. J Chem Phys 133: 235101.
    [12] Stanich CA, Honerkamp-Smith AR, Putzel GG, et al. (2013) Coarsening Dynamics of Domains in Lipid Membranes. Biophys J 105: 444-454. doi: 10.1016/j.bpj.2013.06.013
    [13] Veatch SL, Keller SL (2003) Separation of Liquid Phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol. Biophys J 85:3074-3083. doi: 10.1016/S0006-3495(03)74726-2
    [14] Esposito C, Tian A, Melamed S, et al. (2007) Flicker Spectroscopy of Thermal Lipid Bilayer Domain Boundary Fluctuations. Biophys J 93: 3169-3181. doi: 10.1529/biophysj.107.111922
    [15] Lipowsky R (1992) Budding of Membranes Induced by Intramembrane Domains. J Phys II 2: 1825.
    [16] Bagatolli LA, Gratton E (2001) Direct Observation of Lipid Domains in Free Standing Bilayers Using Two-photon Excitation Fluorescence Microscopy. J Fluorescence 11: 141-160. doi: 10.1023/A:1012228631693
    [17] Ramachandran S, Komura S, Gommper G (2010) Effects of an Embedding Bulk Fluid on Phase Separation Dynamics in a Thin Liquid Film. EPL 89: 56001. doi: 10.1209/0295-5075/89/56001
    [18] Ursell TS, Klug WS, Phillips R (2009) Morphology and Interaction between Lipid Domains. Proc Natl Acad Sci U S A 106: 13301. doi: 10.1073/pnas.0903825106
    [19] Bagatolli L, Kumar PBS (2009) Phase Behavior of Multicomponent Membranes: Experimental and Compuatational Techniques. Soft Matter 5: 3234-3248. doi: 10.1039/b901866b
    [20] Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the Move: Simulations of Membrane Pores, Domains, Stalks and Curves. Biochim Biophys Acta Biomembr 1788: 149-168.
    [21] Lipowsky R (2002) Domains and Rafts in Membranes—Hidden Dimensions of Selforganization. J Biol Phys 28: 195-210. doi: 10.1023/A:1019994628793
    [22] Simons K, Vaz WLC (2004) Model Systems, Lipid Rafts, and Cell Membranes. Annu Rev Biophys Biomol Struct 3: 269.
    [23] Barberousse A, Franceschelli S, Imbert C (2009) Computer Simulations as Experiments. Synthese 169: 557-574. doi: 10.1007/s11229-008-9430-7
    [24] Farago O (2003) “Water-free” Computer Model for Fluid Bilayer Membranes. O J Chem Phys 119: 596-605.
    [25] Brannigan G, Brown FLH (2004) Solvent-free Simulations of Fluid Membrane Bilayers. J Chem Phys 120: 1059. doi: 10.1063/1.1625913
    [26] Shillcock JC (2012) Spontaneous Vesicle Self-Assembly: A Mesoscopic View of Membrane Dynamics. Langmuir 28: 541-547.
    [27] Tieleman DP, Leontiadau H, Mark AE, et al. (2003) Simulation of Pore Formation in Lipid Bilayers by Mechanical Stress and Electric Fields. J Am Chem Soc125: 6382-6383.
    [28] Damodaran KV, Merz KM (1994) A Comparison of DMPC- and DLPE-based Lipid Bilayers. Biophys J 66: 1076-1087. doi: 10.1016/S0006-3495(94)80889-6
    [29] Moore PB, Lopez CF, Klein ML (2001) Dynamical Properties of a Hydrated Lipid Bilayer from a Multinanosecond Molecular Dynamics Simulation. Biophys J 81: 2484-2494. doi: 10.1016/S0006-3495(01)75894-8
    [30] Essmann U, Perera L, Berkowitz ML (1995) The Origin of the Hydration Interaction of Lipid Bilayers from MD Simulation of Dipalmitoylphosphatidylcholine Membranes in Gel and Liquid Crystalline Phases. Langmuir 11: 4519-4531. doi: 10.1021/la00011a056
    [31] Cooke IR, Deserno M (2005) Solvent-free Model for Self-assembling Fluid Bilayer Membranes: Stabilization of the Fluid Phase based on Broad Attractive Tail Potentials. J Chem Phys 123: 224710. doi: 10.1063/1.2135785
    [32] West B, Schmid F (2010) Fluctuations and Elastic Properties of Lipid Membranes in the Gel L-beta State: A Coarse-grained Monte Carlo Study. Soft Matter 6: 1275. doi: 10.1039/b920978f
    [33] Farago O (2008) Mode Excitation Monte Carlo Simulations of Mesoscopically Large Membranes. J Chem Phys 128: 184105. doi: 10.1063/1.2918736
    [34] Farago O (2010) Fluctuation-induced Attraction between Adhesion Sites of Supported Membranes. Phys Rev E 81: 050902. doi: 10.1103/PhysRevE.81.050902
    [35] Farago O (2008) Membrane Fluctuations near a Plane Rigid Surface. Phys Rev E 78:051919. doi: 10.1103/PhysRevE.78.051919
    [36] Dutt M, Nayhouse MJ, Kuksenok O, et al. (2011) Interactions of End-Functionalized Nanotubes with Lipid Vesicles: Spontaneous Insertion and Nanotube Self-organization. Current Nanoscience 7: 699-715.
    [37] Dutt M, Kuksenok O, Nayhouse MJ, et al. (2011) Modeling the Self-Assembly of Lipids and Nanotubes in Solution: Forming Vesicles and Bicelles with Transmembrane Nanotube Channels. ACS Nano 5: 4769-4782. doi: 10.1021/nn201260r
    [38] Dutt M, Kuksenok O, Little SR, et al. (2011) Forming Transmembrane Channels Using End-Functionalized Nanotubes. Nanoscale. 3: 240-250. doi: 10.1039/C0NR00578A
    [39] Dutt M, Kuksenok O, Little SR, et al. (2012) Designing Tunable Bio-nanostructured Materials via Self-assembly of Amphiphilic Lipids and Functionalized Nanotubes. MRS Spring 2012 Conference Proceedings; 1464.
    [40] Ludford P, Aydin F, Dutt M (2013) Design and Characterization of Nanostructured Biomaterials via the Self-assembly of Lipids. MRS Fall 2013 Conference Proceedings; 1498.
    [41] Koufos E, Dutt M (2013) Design of Nanostructured Hybrid Inorganic-biological Materials via Self-assembly. MRS Spring 2013 Conference Proceedings; 1569.
    [42] Smith KA, Jasnow D, Balazs AC (2007) Designing Synthetic Vesicles that Engulf Nanoscopic Particles. J Chem Phys 127: 084703. doi: 10.1063/1.2766953
    [43] Goetz R, Lipowsky R (1998) Computer Simulations of Bilayer Membranes: Self-assembly and Interfacial Tension. J Chem Phys 108: 7397-7409.
    [44] Kranenburg M, Venturoli M, Smit B. (2003) Phase Behavior and Induced Interdigitation in Bilayers Studied with Dissipative Particle Dynamics. J Phys Chem 41: 11491.
    [45] Kranenburg M, Laforge C, Smit B (2004) Mesoscopic Simulations of Phase Transitions in Lipid Bilayers. Phys Chem Chem Phys 6: 4531-4534. doi: 10.1039/b410914g
    [46] Yamamoto S, Maruyama Y, Hyodo S (2002) Dissipative Particle Dynamics Study of Spontaneous Vesicle Formation of Amphiphilic Molecules. J Chem Phys 116: 5842.
    [47] Yamamoto S, Hyodo S (2003) Budding and Fission Dynamics of Two-Component Vesicles. J Chem Phys 118: 7937-7943. doi: 10.1063/1.1563613
    [48] Stevens MJ, Hoh JH, Woolf TB (2003) Insights into the Molecular Mechanism of Membrane Fusion from Simulation: Evidence for the Association of Splayed Tails. Phys Rev Lett 91: 188102. doi: 10.1103/PhysRevLett.91.188102
    [49] Stevens MJ (2004) Coarse-grained Simulations of Lipid Bilayers. Chem Phys 121: 11942-11948.
    [50] Arkhipov A, Yin Y, Schulten K (2009) Membrane-bending Mechanism of Amphiphysin N-BAR Domains. Biophys J 97: 2727-2735.
    [51] Shih AY, Arkhipov A, Freddolino PL, et al. (2006) A Coarse-grained Protein-lipid Model with Application to Lipoprotein Particles. J Phys Chem 110: 3674-3684. doi: 10.1021/jp0550816
    [52] Marrink SJ, Risselada HJ, Yefimov S, et al. (2007) The MARTINI Forcefield: Coarse-grained Model for Biomolecular Simulations. J Phys Chem B 111: 7812-7824. doi: 10.1021/jp071097f
    [53] Wang Z, Frenkel DJ (2005) Modeling Flexible Amphiphilic Bilayers: A Solvent-free Off-lattice Monte Carlo Study. Chem Phys 122: 234711.
    [54] Brannigan G, Philips PF, Brown FLH (2005) Flexible Lipid Bilayers in Implicit Solvent. Phys Rev E 72: 011915. doi: 10.1103/PhysRevE.72.011915
    [55] Noguchi H, Takasu M (2001) Self-assembly of Amphiphiles into Vesicles: A Brownian Dynamics Simulation. Phys Rev E 64: 041913. doi: 10.1103/PhysRevE.64.041913
    [56] Noguchi H (2002) Fusion and Toroidal Formation of Vesicles by Mechanical Forces: A Brownian Dynamics Simulation. J Chem Phys 117: 8130-8137. doi: 10.1063/1.1510114
    [57] Katsov K, Mueller M, Schick M (2004) Field Theoretic Study of Bilayer Membrane Fusion I Hemifusion Mechanism. Biophys J 87: 3277. doi: 10.1529/biophysj.103.038943
    [58] Schick M (2012) Membranes: A Field-theoretic Description. Encyclopedia of Biophysics. Roberts, G.C.K., Ed., Springer-Verlag: Berlin Heidelberg.
    [59] May S, Kozlovsky Y, Ben-Shaul A, et al. (2004) Tilt Modulus of a Lipid Monolayer. Eur Phys J E 14: 299-308. doi: 10.1140/epje/i2004-10019-y
    [60] May S (2000) A Molecular Model for the Line Tension of Lipid Membranes. Eur Phys J E 3: 37-44. doi: 10.1007/s101890070039
    [61] Lee WB, Mezzenga R, Fredrickson GH (2008) Self-consistent Field Theory for Lipid-based Liquid Crystals: Hydrogen Bonding Effect. J Chem Phys 128: 074504-074510. doi: 10.1063/1.2838624
    [62] Ginzburg VV, Balijepalli S (2007) Modelling the Thermodynamics of the Interaction of Nanoparticles with Cell Membranes. Nano Lett 7: 3716-3722.
    [63] Ayton G, Voth GA (2002) Bridging Microscopic and Mesoscopic Simulations of Lipid Bilayers. Biophys J 83: 3357-3370. doi: 10.1016/S0006-3495(02)75336-8
    [64] Wang ZJ, Deserno MA (2010) Systematically Coarse-grained Solvent-free Model for Quantitative Phospholipid Bilayer Simulations. J Phys Chem B 114: 11207. doi: 10.1021/jp102543j
    [65] Wang ZJ, Deserno M (2010) Systematic Implicit Solvent Coarse-graining of Bilayer Membranes: Lipid and Phase Transferability of the Force Field. New J Phys 12: 095004. doi: 10.1088/1367-2630/12/9/095004
    [66] Ge Z, Li Q, Wang Y (2014) Free energy Calculation of Nanodiamond-Membrane Association—The Effect of Shape and Surface Functionalization. J Chem Theory Comput 10: 2751-2758. doi: 10.1021/ct500194s
    [67] Reid CVL, Ricci M, Silva PHJ, et al. (2014) Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nat Commun 5: 4482.
    [68] Wong-Ekkabut J, Baoukina S, Triampo W, et al. (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3: 363-368. doi: 10.1038/nnano.2008.130
    [69] Li Y, Chen X, Gu N (2008) Computational Investigation of Interaction between Nanoparticles and Membranes: Hydrophobic/Hydrophilic Effect. J Phys Chem B 112: 16647-16653. doi: 10.1021/jp8051906
    [70] Huang C, Zhang Y, Yuan H, et al. (2013) Role of Nanoparticle Geometry in Endocytosis: Laying Down to Stand Up. Nano Lett 13: 4546-4550. doi: 10.1021/nl402628n
    [71] Shi X, Bussche AVD, Hurt RH, et al. (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6: 714-719. doi: 10.1038/nnano.2011.151
    [72] Illya G, Lipowsky R, Shillcock JC (2006) Two-component membrane material properties and domain formation from dissipative particle dynamics. J Chem Phys 125: 114710. doi: 10.1063/1.2353114
    [73] Groot RD, Warren PB (1997) Dissipative Particle Dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107: 4423-4435. doi: 10.1063/1.474784
    [74] Chou H, Tsao HK, Sheng YJ (2006) Morphologies of multicompartment micelles formed by triblock copolymers. J Chem Phys 125: 194903. doi: 10.1063/1.2390716
    [75] Ortiz V, Nielsen SO, Discher DE, et al. (2005) Disipative Particle Dyanmics simulations of polymerosome. J Phys Chem B 109: 17708-17714. doi: 10.1021/jp0512762
    [76] Boek ES, Coveney PV, Lekkerkerker HNW, et al. (1997) Simulating rheology of dense colloidal suspensions using dissipative particle dynamics. Phys Rev E 55: 3124-3131.
    [77] Spenley NA (200) Scaling laws for polymers in dissipative particle dynamics, Europhys Lett 49: 534-540.
    [78] Fan XJ, Phan-Thien N, Chen S, et al. (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18: 063102. doi: 10.1063/1.2206595
    [79] Chem S, Phan-Thien N, Fan XJ, et al. (2004) Dissipative particle dynamics of polymer drops in periodic shear flow. J Non-Newtonian Fluid Mech 118: 65-81. doi: 10.1016/j.jnnfm.2004.02.005
    [80] Arai N, Yasuoka K, Zeng XC (2013) A vesicle cell under collision with a Janus or homogeneous nanoparticle: translocation dynamics and late-stage morphology. Nanoscale 5: 9089-9100. doi: 10.1039/c3nr02024j
    [81] Yang K, Ma Y (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5: 579-583. doi: 10.1038/nnano.2010.141
    [82] Ding H, Tian W, Ma Y (2012) Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano 6: 1230-1238. doi: 10.1021/nn2038862
    [83] Chen X, Tian F, Zhang X, et al. (2013) Internalization pathways of nanoparticles and their interaction with a vesicle. Soft Matter 9: 7592-7600. doi: 10.1039/c3sm50931a
    [84] Arnarez C, Uusitalo JJ, Masman MF, et al. (2015) Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent. J Chem Theory Comput 11: 260-275. doi: 10.1021/ct500477k
    [85] Hall BA, Chetwynd AP, Sansom MSP (2011) Exploring Peptide-Membrane Interactions with Coarse-Grained MD Simulations. Biophys J 100: 1940-1948.
    [86] Gkeka P, Sarkisov L (2010). Interactions of Phospholipid Bilayers with Several Classes of Amphiphilic α-Helical Peptides: Insights from Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 114: 826-839. doi: 10.1021/jp908320b
    [87] Allen MP, Tildesley DJ (2001) Computer simulations of liquids, Clarendon Press, Oxford.
    [88] Koufos E, Muralidharan B, Dutt M (2014) Computational Design of Multi-component Bio-Inspired Bilayer. AIMS Materials Science 1: 103-120. doi: 10.3934/matersci.2014.2.103
    [89] Milletti F (2012) Cell-Penetrating Peptides: Classes, Origin, and Current Landscape. Drug Discov Today 17: 850-860. doi: 10.1016/j.drudis.2012.03.002
    [90] Aydin F, Ludford P, Dutt M (2014) Phase segregation in bio-inspired multi-component vesicles encompassing double tail phospholipid species. Soft Matter 10: 6096-6108. doi: 10.1039/C4SM00998C
    [91] Aydin F, Uppaladadium G, Dutt M (2015) The Design of Shape-Tunable Hairy Vesicles. Colloids Surf B Biointerfaces 128: 268-275. doi: 10.1016/j.colsurfb.2015.01.049
    [92] Monticelli L, Kandasamy SK, Periole X, et al. (2008) The MARTINI Coarse-Grained Force Field: Extension to Proteins. J Chem Theory Comput 4: 819-834. doi: 10.1021/ct700324x
    [93] Feller SE, Pastor RW (1999) Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities. J Chem Phys 111: 1281-1287. doi: 10.1063/1.479313
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6891) PDF downloads(1227) Cited by(2)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog