Research article

Diffusion of binary opinions in a growing population with heterogeneous behaviour and external influence

  • Received: 23 January 2023 Revised: 09 April 2023 Accepted: 20 April 2023 Published: 05 May 2023
  • We consider a growing population of individuals with binary opinions, namely, 0 or 1, that evolve in discrete time. The underlying interaction network is complete. At every time step, a fixed number of individuals are added to the population. The opinion of the new individuals may or may not depend on the current configuration of opinions in the population. Further, in each time step, a fixed number of individuals are chosen and they update their opinion in three possible ways: they organically switch their opinion with some probability and with some probability they adopt the majority or the minority opinion. We study the asymptotic behaviour of the fraction of individuals with either opinion and characterize conditions under which it converges to a deterministic limit. We analyze the behaviour of the limiting fraction as a function of the probability of new individuals having opinion 1 as well as with respect to the ratio of the number of people being added to the population and the number of people being chosen to update opinions. We also discuss the nature of fluctuations around the limiting fraction and study the transitions in scaling depending on the system parameters. Further, for this opinion dynamics model on a finite time horizon, we obtain optimal external influencing strategies in terms of when to influence to get the maximum expected fraction of individuals with opinion 1 at the end of the finite time horizon.

    Citation: Sharayu Moharir, Ananya S. Omanwar, Neeraja Sahasrabudhe. Diffusion of binary opinions in a growing population with heterogeneous behaviour and external influence[J]. Networks and Heterogeneous Media, 2023, 18(3): 1288-1312. doi: 10.3934/nhm.2023056

    Related Papers:

  • We consider a growing population of individuals with binary opinions, namely, 0 or 1, that evolve in discrete time. The underlying interaction network is complete. At every time step, a fixed number of individuals are added to the population. The opinion of the new individuals may or may not depend on the current configuration of opinions in the population. Further, in each time step, a fixed number of individuals are chosen and they update their opinion in three possible ways: they organically switch their opinion with some probability and with some probability they adopt the majority or the minority opinion. We study the asymptotic behaviour of the fraction of individuals with either opinion and characterize conditions under which it converges to a deterministic limit. We analyze the behaviour of the limiting fraction as a function of the probability of new individuals having opinion 1 as well as with respect to the ratio of the number of people being added to the population and the number of people being chosen to update opinions. We also discuss the nature of fluctuations around the limiting fraction and study the transitions in scaling depending on the system parameters. Further, for this opinion dynamics model on a finite time horizon, we obtain optimal external influencing strategies in terms of when to influence to get the maximum expected fraction of individuals with opinion 1 at the end of the finite time horizon.



    加载中


    [1] L. Becchetti, A. Clementi, E. Natale, Consensus dynamics: An overview, SIGACT News, 51 (2020), 58–104. https://doi.org/10.1145/3388392.3388403 doi: 10.1145/3388392.3388403
    [2] V. S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Gurgaon: Hindustan Book Agency, 2008. https://doi.org/10.1007/978-93-86279-38-5
    [3] F. Bullo, F. Fagnani, B. Franci, Finite-time influence systems and the wisdom of crowd effect, SIAM J. Control Optim., 58 (2020), 636–659. https://doi.org/10.1137/18M1232267 doi: 10.1137/18M1232267
    [4] A. Carro, R. Toral, M. San Miguel, The noisy voter model on complex networks, Sci. Rep., 6 (2016), 24775. https://doi.org/10.1038/srep24775 doi: 10.1038/srep24775
    [5] P. Chen, S. Redner, Majority rule dynamics in finite dimensions, Phys. Rev. E, 71 (2005), 036101. https://link.aps.org/doi/10.1103/PhysRevE.71.036101
    [6] K. P. Choi, G. Kaur, T. Wu, On asymptotic joint distributions of cherries and pitchforks for random phylogenetic trees, J. Math. Biol., 83 (2021), 40. https://doi.org/10.1007/s00285-021-01667-2 doi: 10.1007/s00285-021-01667-2
    [7] J. T. Cox, Coalescing random walks and voter model consensus times on the torus in $\mathbb{Z}^d$, Ann. Probab., 17 (1989), 1333–1366. https://doi.org/10.1214/aop/1176991158 doi: 10.1214/aop/1176991158
    [8] J. Cruise, A. Ganesh, Probabilistic consensus via polling and majority rules, Queueing Syst., 78 (2014), 99–120. https://doi.org/10.1007/s11134-014-9397-7 doi: 10.1007/s11134-014-9397-7
    [9] F. Dietrich, S. Martin, M. Jungers, Control via leadership of opinion dynamics with state and time-dependent interactions, IEEE Trans. Automat. Contr., 63 (2018), 1200–1207. https://doi.org/10.1109/TAC.2017.2742139 doi: 10.1109/TAC.2017.2742139
    [10] R. Durrett, J. P. Gleeson, A. L. Lloyd, P. J. Mucha, F. Shi, D. Sivakoff, et al., Graph fission in an evolving voter model, Proc. Natl. Acad. Sci., 109 (2012), 3682–3687. https://www.pnas.org/doi/abs/10.1073/pnas.1200709109
    [11] S. Galam, Minority opinion spreading in random geometry, Eur. Phys. J. B, 25 (2002), 403–406. https://doi.org/10.1140/epjb/e20020045 doi: 10.1140/epjb/e20020045
    [12] M. T. Gastner, K. Ishida, Voter model on networks partitioned into two cliques of arbitrary sizes, Journal of Physics A: Mathematical and Theoretical, 52 (2019), 505701. https://dx.doi.org/10.1088/1751-8121/ab542f doi: 10.1088/1751-8121/ab542f
    [13] M. González-Navarrete, R. Hernández, Reinforced random walks under memory lapses, J. Stat. Phys., 185 (2021), 3. https://doi.org/10.1007/s10955-021-02826-x doi: 10.1007/s10955-021-02826-x
    [14] M. González-Navarrete, R. Lambert, The diffusion of opposite opinions in a randomly biased environment, J. Math. Phys., 60 (2019), 113301. https://doi.org/10.1063/1.5095762 doi: 10.1063/1.5095762
    [15] R. Gouet, Martingale functional central limit theorems for a generalized pólya urn, Ann. Probab., 21 (1993), 1624–1639. http://www.jstor.org/stable/2244591
    [16] A. Gupta, S. Moharir, N. Sahasrabudhe, Influencing opinion dynamics in networks with limited interaction, IFAC-PapersOnLine, 54 (2021), 684–689. https://doi.org/10.1016/j.ifacol.2021.06.130 doi: 10.1016/j.ifacol.2021.06.130
    [17] P. Hall, C. C. Heyde, Martingale Limit Theory and its Applications, New York: Academic Press, 1980. https://doi.org/10.1016/C2013-0-10818-5
    [18] Q. He, X. Wang, B. Yi, F. Mao, Y. Cai, M. Huang, Opinion maximization through unknown influence power in social networks under weighted voter model, IEEE Syst. J., 14 (2020), 1874–1885. https://doi.org/10.1109/JSYST.2019.2922373 doi: 10.1109/JSYST.2019.2922373
    [19] R. A. Holley, T. M. Liggett, Ergodic theorems for Weakly Interacting infinite systems and the voter model, Ann. Probab., 3 (1975), 643–663. https://doi.org/10.1214/aop/1176996306 doi: 10.1214/aop/1176996306
    [20] A. Jadbabaie, A. Makur, E. Mossel, R. Salhab, Inference in opinion dynamics under social pressure, IEEE Trans. Automat. Contr., (2022), 1–15. https://doi.org/10.1109/TAC.2022.3191791
    [21] S. Janson, Functional limit theorems for multitype branching processes and generalized pólya urns, Stoch. Process. Appl., 110 (2004), 177–245. https://doi.org/10.1016/j.spa.2003.12.002 doi: 10.1016/j.spa.2003.12.002
    [22] N. Kubota, M. Takei, Gaussian fluctuation for superdiffusive elephant random walks, J. Stat. Phys, 177 (2019), 1157–1171. https://doi.org/10.1007/s10955-019-02414-0 doi: 10.1007/s10955-019-02414-0
    [23] B. Kumar, N. Sahasrabudhe, S. Moharir, On influencing opinion dynamics over finite time horizons, in The 23rd International Symposium on Mathematical Theory of Networks and Systems, Hong kong, 2018.
    [24] L. Laulin, A martingale approach for pólya urn processes, Electron. Commun. Probab., 25 (2020), 1–13. https://doi.org/10.1214/20-ecp321 doi: 10.1214/20-ecp321
    [25] M. Mobilia, A. Petersen, S. Redner, On the role of zealotry in the voter model, J. Stat. Mech. Theory Exp., 2007 (2007), P08029. https://dx.doi.org/10.1088/1742-5468/2007/08/P08029 doi: 10.1088/1742-5468/2007/08/P08029
    [26] A. Mukhopadhyay, R. R. Mazumdar, R. Roy, Voter and majority dynamics with biased and stubborn agents, J. Stat. Phys., 181 (2020), 1239–1265. https://doi.org/10.1007/s10955-020-02625-w doi: 10.1007/s10955-020-02625-w
    [27] T. Nakata, H. Imahayashi, M. Yamashita, Probabilistic local majority voting for the agreement problem on finite graphs, in Computing and Combinatorics, Berlin, Heidelberg: Springer, 1627 (1999), 330–338. https://doi.org/10.1007/3-540-48686-0-33
    [28] H. Noorazar, Recent advances in opinion propagation dynamics: a 2020 survey, Eur. Phys. J. Plus, 135 (2020), 521. https://doi.org/10.1140/epjp/s13360-020-00541-2 doi: 10.1140/epjp/s13360-020-00541-2
    [29] S. Redner, Reality-inspired voter models: A mini-review, C. R. Phys., 20 (2019), 275–292. https://www.sciencedirect.com/science/article/pii/S1631070519300325
    [30] G. Romero Moreno, E. Manino, L. Tran-Thanh, M. Brede, Zealotry and influence maximization in the voter model: When to target partial zealots?, in Complex Networks XI, Cham: Springer, (2020), 107–118. https://doi.org/10.1007/978-3-030-40943-2-10
    [31] A. Saxena, B. Kumar, A. Gupta, N. Sahasrabudhe, S. Moharir, Influencing opinions of heterogeneous populations over finite time horizons, in 2021 International Conference on COMmunication Systems and NETworkS, Bangalore, (2021), 474–482. https://doi.org/10.1109/COMSNETS51098.2021.9352905
    [32] S. Singh, F. Alajaji, B. Gharesifard, Consensus using a network of finite memory p{ó}lya urns, IEEE Syst. Control. Lett., 6 (2022), 2780–2785. https://doi.org/10.1109/LCSYS.2022.3177428 doi: 10.1109/LCSYS.2022.3177428
    [33] A. Sîrbu, V. Loreto, V. D. P. Servedio, F. Tria, Opinion Dynamics: Models, Extensions and External Effects, Cham, Springer, (2017), 363–401. https://doi.org/10.1007/978-3-319-25658-0-17
    [34] V. Sood, S. Redner, Voter model on heterogeneous graphs, Phys. Rev. Lett., 94 (2005), 178701. https://link.aps.org/doi/10.1103/PhysRevLett.94.178701
    [35] E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, A. Scaglione, Binary opinion dynamics with stubborn agents, ACM Trans. Econ. Comput., 1 (2013), 1–30. https://doi.org/10.1145/2538508 doi: 10.1145/2538508
    [36] L. X. Zhang, Central limit theorems of a recursive stochastic algorithm with applications to adaptive designs, Ann. Appl. Probab., 26 (2016), 3630–3658. https://doi.org/10.1214/16-AAP1187 doi: 10.1214/16-AAP1187
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1116) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog