[1]
|
On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete Contin. Dyn. Syst. (2014) 34: 5165-5179.
|
[2]
|
Large-time regularity of viscous surface waves. Arch. Ration. Mech. Anal. (1983/84) 84: 307-352.
|
[3]
|
Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. (2004) 72: 1-28.
|
[4]
|
A. Einolghozati, M. Sardari, A. Beirami and F. Fekri, Capacity of discrete molecular diffusion channels, Proc. IEEE International Symposium on Information Theory, (2011).
|
[5]
|
A. Einolghozati, M. Sardari and F. Fekri, Capacity of diffusion-based molecular communication with ligand receptors, Proc. IEEE Information Theory Workshop, (2011).
|
[6]
|
Maximum principles for the primitive equations of the atmosphere. Discrete Contin. Dynam. Systems (2001) 7: 343-362.
|
[7]
|
Mathematical analysis of a model for the initiation of angiogenesis. SIAM J. Math. Anal. (2002) 33: 1330-1355.
|
[8]
|
Stability of solutions of chemotaxis equations in reinforced random walks. J. Math. Anal. Appl. (2002) 272: 138-162.
|
[9]
|
Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology. Comm. Pure and Appl. Anal. (2007) 6: 287-309.
|
[10]
|
Nonlinear transmission problems for quasilinear diffusion systems. Networks and Heterogeneous Media (2007) 2: 359-381.
|
[11]
|
Some boundedness of solutions for the primitive equations of the atmosphere and the ocean. ZAMM Journal of Applied Mathematics and Mechanics (2015) 95: 38-48.
|
[12]
|
Local-in-time solvability of target detection model in molecular communication network. International Journal of Applied Mathematics (2018) 31: 427-455. |
[13]
|
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber Dtsch. Math.-Verein. (2003) 105: 103-165. |
[14]
|
Convergence of solutions to simplified self-organizing target-detection model. Sci. Math. Japnonicae (2016) 81: 115-129. |
[15]
|
A mathematical model of mon-diffusion-based mobile molecular communication networks. IEEE Comm. Lettr. (2017) 21: 1967-1972.
|
[16]
|
The stability and dynamics of a spike in the 1D Keller-Segel Model. IMA J. Appl. Math. (2007) 72: 140-162.
|
[17]
|
Model for chemotaxis. J. Theor. Biol. (1971) 30: 225-234. |
[18]
|
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Society, Providence, R.I., 1968.
|
[19]
|
(1968) Linear and Quasilinear Elliptic Equations. New York-London: Academic Press. |
[20]
|
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Die Grundlehren der Mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.
|
[21]
|
(2013) Molecular Communication. Cambridge: Cambridge University Press. |
[22]
|
T. Nakano and et al., Performance evaluation of leader-follower-based mobile molecular communication networks for target detection applications, IEEE Trans. Comm., 65 (2017), 663–676.
|
[23]
|
Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math. (1955) 8: 649-675.
|
[24]
|
Y. Okaie and et al., Modeling and performance evaluation of mobile bionanocensor networks for target tracking, Proc. IEEE ICC, (2014), 3969–3974.
|
[25]
|
Y. Okaie and et al., Cooperative target tracking by a mobile bionanosensor network, IEEE Trans. Nanobioscience, 13 (2014), 267–277.
|
[26]
|
Atsushi Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcialaj Ekvacioj (2001) 44: 441-469. |
[27]
|
Stationary solutions of chemotaxis systems. Trans. Amer. Math. Soc. (1985) 292: 531-556.
|
[28]
|
Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. (2000) 10: 191-224. |
[29]
|
On multivortex solutions in Chern-Simons gauge theory. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (1998) 1: 109-121. |
[30]
|
Global solutions to a chemotaxis system with non-diffusive memory. J. Math. Anal. Appl. (2014) 410: 908-917.
|
[31]
|
Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol. (2017) 74: 583-618.
|
[32]
|
Surface waves for a compressible viscous fluid. J. Math. Fluid Mech. (2003) 5: 303-363.
|
[33]
|
Steady state solutions of a rReaction-diffusion systems modeling chemotaxis. Math. Nachr. (2002) 233/234: 221-236.
|
[34]
|
J. Wloka, Partielle Differentialgleichungen, B. G. Teubner, Stuttgart, 1982,500 pp.
|