In this paper we study the optimal reinforcement of an elastic membrane, fixed at its boundary, by means of a network (connected one-dimensional structure), that has to be found in a suitable admissible class. We show the existence of an optimal network, and observe that such network carries a multiplicity that in principle can be strictly larger than one. Some numerical simulations are shown to confirm this issue and to illustrate the complexity of the optimal network when the total length becomes large.
Citation: Giovanni Alberti, Giuseppe Buttazzo, Serena Guarino Lo Bianco, Édouard Oudet. Optimal reinforcing networks for elastic membranes[J]. Networks and Heterogeneous Media, 2019, 14(3): 589-615. doi: 10.3934/nhm.2019023
In this paper we study the optimal reinforcement of an elastic membrane, fixed at its boundary, by means of a network (connected one-dimensional structure), that has to be found in a suitable admissible class. We show the existence of an optimal network, and observe that such network carries a multiplicity that in principle can be strictly larger than one. Some numerical simulations are shown to confirm this issue and to illustrate the complexity of the optimal network when the total length becomes large.
[1] | On the structure of continua with finite length and Golab's semicontinuity theorem. Nonlinear Anal. (2017) 153: 35-55. |
[2] | Thin inclusions in linear elasticity: A variational approach. J. Reine Angew. Math. (1988) 386: 99-115. |
[3] | A continuous model of transportation. Econometrica (1952) 20: 643-660. |
[4] | Energies with respect to a measure and applications to low dimensional structures. Calc. Var. Partial Differential Equations (1996) 5: 37-54. |
[5] | Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. (2010) 93: 652-671. |
[6] | Optimal regions for congested transport. ESAIM Math. Model. Numer. Anal. (2015) 49: 1607-1619. |
[7] | A free boundary problem arising in PDE optimization. Calc. Var. Partial Differential Equations (2015) 54: 3829-3856. |
[8] |
G. Buttazzo, É. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002, 41–65. |
[9] | Asymptotical compliance optimization for connected networks. Netw. Heterog. Media (2007) 2: 761-777. |
[10] | Asymptotics of an optimal compliance-location problem. ESAIM Control Optim. Calc. Var. (2006) 12: 752-769. |
[11] | On the optimal reinforcement of an elastic membrane. Riv. Mat. Univ. Parma (Ser. 7) (2005) 4: 115-125. |
[12] | New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Program. (Ser. A) (2006) 106: 403-421. |
[13] | (1986) The Geometry of Fractal Sets. Cambridge: Cambridge Tracts in Mathematics, 85, Cambridge University Press. |
[14] | Sur quelques points de la théorie de la longueur. Ann. Soc. Polon. Math. (1929) 7: 227-241. |
[15] |
S. G. Johnson, The NLopt nonlinear-optimization package., Available from: http://ab-initio.mit.edu/nlopt. |
[16] | Γ-convergence for the irrigation problem. J. Convex Anal. (2005) 12: 145-158. |
[17] |
E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin-New York, 1980. |
[18] | Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers (1952) 1: 325-362. |
Approximation of globally optimal reinforcement structures for
Approximation of globaly optimal reinforcement structures for
Approximation of globaly optimal reinforcement strucutres for m = 0.5, L = 1.5, 2.5 and 5 for a source consisting of two dirac masses. The upper colorbar is related to the weights θ which colors the optimal reinforcement set on the left, whereas the lower colorbar stands for the tangential gradient plotted on the connected set on the right picture