Citation: Mohamed A. Eldeeb. Aging: when the ubiquitin–proteasome machinery collapses[J]. AIMS Molecular Science, 2017, 4(2): 219-223. doi: 10.3934/molsci.2017.2.219
[1] | Bachmair A, Varshavsky A (1989) The degradation signal in a short-lived protein. Cell 56: 1019-1032. doi: 10.1016/0092-8674(89)90635-1 |
[2] | Greenberg BM, Gaba V, Mattoo AK, et al. (1987) Identification of a primary in vivo degradation product of the rapidly-turning-over 32 kd protein of photosystem II. EMBO J 6: 2865-2869. |
[3] | Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329: 348-351. |
[4] | Varshavsky A (2008) Discovery of cellular regulation by protein degradation. J Biol Chem 283: 34469-34489. doi: 10.1074/jbc.X800009200 |
[5] | Eldeeb MA, Fahlman RP (2016) Phosphorylation impacts N-end rule degradation of the proteolytically activated form of Bmx kinase. J Biol Chem 291: 22757-22768. doi: 10.1074/jbc.M116.737387 |
[6] | Eldeeb MA, Fahlman RP (2014) The anti-apoptotic form of tyrosine kinase Lyn that is generated by proteolysis is degraded by the N-end rule pathway. Oncotarget 5: 2714-2722. doi: 10.18632/oncotarget.1931 |
[7] | Eldeeb M, Fahlman R (2016) The-N-end rule: The beginning determines the end. Protein Pept Lett 23: 343-348. |
[8] | Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 20: 2423-2435. doi: 10.1128/MCB.20.7.2423-2435.2000 |
[9] | Maki CG, Huibregtse JM, Howley PM (1996) In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res 56: 2649-2654. |
[10] | Qiu J, Sheedlo MJ, Yu K, et al. (2016) Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533: 120-124. doi: 10.1038/nature17657 |
[11] | Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3: 328-342. |
[12] | Vilchez D, Seaz I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5: 5659. doi: 10.1038/ncomms6659 |
[13] | Vilchez D, Boyer L, Morantte I, et al. (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489: 304-308. doi: 10.1038/nature11468 |
[14] | Vilchez D, Morantte I, Liu Z, et al. (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 389: 263-268. |
[15] | Panowski SH, Wolff S, Aguilaniu H, et al. (2007). PHA-4/Foxa mediates diet- restriction-induced longevity of C. elegans. Nature 447: 550-555. doi: 10.1038/nature05837 |
[16] | Bartke A (2008) Insulin and aging. Cell Cycle 7: 3338-3343. doi: 10.4161/cc.7.21.7012 |
[17] | Dasuri K, Zhang L, Ebenezer P, et al. (2009) Aging and dietary restriction alter proteasome biogenesis and composition in the brain and liver. Mech Ageing Dev 130: 777-783. |
[18] | Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120: 483-495. doi: 10.1016/j.cell.2005.02.001 |
[19] | Sullivan PG, Dragicevic NB, Deng JH, et al. (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 279: 20699-20707. doi: 10.1074/jbc.M313579200 |
[20] | Gidalevitz T, Krupinski T, Garcia S, et al. (2009) Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 5: e1000399. doi: 10.1371/journal.pgen.1000399 |
[21] | Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, et al. (2016) The life cycle of the 26 S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26: 869-885. |
[22] | Panowski SH, Dillin A (2009) Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol Metab 20: 259-264. doi: 10.1016/j.tem.2009.03.006 |
[23] | Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299: 1346-1351. doi: 10.1126/science.1081447 |
[24] | Matilainen O, Arpalahti L, Rantanen V, et al. (2013) Insulin/IGF- 1 signaling regulates proteasome activity through the deubiquitinating enzyme UBH-4. Cell Rep 3: 1980-1995. doi: 10.1016/j.celrep.2013.05.012 |
[25] | Kirkwood TB (2005) Understanding the odd science of aging. Cell 120: 437-447. doi: 10.1016/j.cell.2005.01.027 |
[26] | Chen L, Brewer MD, Guo L, et al. (2017) Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis. Cell Rep 18: 3143-3154. doi: 10.1016/j.celrep.2017.03.010 |
[27] | Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 91: 1161-1218. doi: 10.1152/physrev.00022.2010 |
[28] | Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462: 1061-1064. doi: 10.1038/nature08619 |
[29] | Dillin A, Hsu AL, Arantes-Oliveira N, et al. (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298: 2398-2401. |
[30] | Partridge L, Gems D, Withers DJ (2005) Sex and death: What is the connection? Cell 120: 461-472. doi: 10.1016/j.cell.2005.01.026 |