Research article

Exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses

  • Published: 22 May 2025
  • In this paper, the exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses is studied. In order to save cost and ensure that the control system does not jitter, two unsigned controllers are designed, and some criteria for guaranteeing exponential synchronization are given based on the differential inclusion theory and the fractional calculus theory. Finally, two numerical examples are given to verify the effectiveness of the results.

    Citation: Yangtao Wang, Kelin Li. Exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses[J]. Mathematical Modelling and Control, 2025, 5(2): 164-179. doi: 10.3934/mmc.2025012

    Related Papers:

  • In this paper, the exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses is studied. In order to save cost and ensure that the control system does not jitter, two unsigned controllers are designed, and some criteria for guaranteeing exponential synchronization are given based on the differential inclusion theory and the fractional calculus theory. Finally, two numerical examples are given to verify the effectiveness of the results.



    加载中


    [1] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2003), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
    [2] R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000. https://doi.org/10.1142/3779
    [3] P. Sopasakis, H. Sarimveis, P. Macheras, A. Dokoumetzidis, Fractional calculus in pharmacokinetics, J. Pharmacokinet. Pharmacodyn., 45 (2018), 107–125. https://doi.org/10.1007/s10928-017-9547-8 doi: 10.1007/s10928-017-9547-8
    [4] C. Song, J. Cao, Dynamics in fractional-order neural networks, Neurocomputing, 142 (2014), 494–498. https://doi.org/10.1016/j.neucom.2014.03.047 doi: 10.1016/j.neucom.2014.03.047
    [5] E. Kaslik, S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks, Neural Networks, 32 (2012), 245–256. https://doi.org/10.1016/j.neunet.2012.02.030 doi: 10.1016/j.neunet.2012.02.030
    [6] S. Arik, An analysis of exponential stability of delayed neural networks with time varying delays, Neural Networks, 17 (2004), 1027–1031. https://doi.org/10.1016/j.neunet.2004.02.001 doi: 10.1016/j.neunet.2004.02.001
    [7] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932
    [8] J. Sun, C. Li, Z. Wang, Y. Wang, Dynamic analysis of HR-FN-HR neural network coupled by locally active hyperbolic memristors and encryption application based on Knuth-Durstenfeld algorithm, Appl. Math. Modell., 121 (2023), 463–483. https://doi.org/10.1016/j.apm.2023.05.004 doi: 10.1016/j.apm.2023.05.004
    [9] Z. Zhang, C. Li, W. Zhang, J. Zhou, G. Liu, An FPGA-based memristor emulator for artificial neural network, Microelectron. J., 131 (2023), 105639. https://doi.org/10.1016/j.mejo.2022.105639 doi: 10.1016/j.mejo.2022.105639
    [10] K. Sun, J. Chen, X. Yan, The future of memristors: materials engineering and neural networks, Adv. Funct. Mater., 31 (2021), 2006773. https://doi.org/10.1002/adfm.202006773 doi: 10.1002/adfm.202006773
    [11] H. Kim, T. Kim, J. Kim, J. Kim, Deep neural network optimized to resistive memory with nonlinear current-voltage characteristics, JETC, 14 (2018), 1–17. https://doi.org/10.1145/3145478 doi: 10.1145/3145478
    [12] T. Satheesh, R. Sakthivel, N. Aravinth, H. R. Karimi, Unified synchronization and fault-tolerant anti-disturbance control for synchronization of multiple memristor-based neural networks, Int. J. Robust Nonlinear Control, 34 (2024), 2849–2864. https://doi.org/10.1002/rnc.7112 doi: 10.1002/rnc.7112
    [13] Q. Fu, S. Zhong, W. Jiang, W. Xie, Projective synchronization of fuzzy memristive neural networks with pinning impulsive control, J. Franklin Inst., 357 (2020), 10387–10409. https://doi.org/10.1016/j.jfranklin.2020.08.015 doi: 10.1016/j.jfranklin.2020.08.015
    [14] J. Zhang, H. Bao, J. Gu, M. Chen, B. Bao, Multistability and synchronicity of memristor coupled adaptive synaptic neuronal network, Chaos, Soliton. Fract., 185 (2024), 115157. https://doi.org/10.1016/j.chaos.2024.115157 doi: 10.1016/j.chaos.2024.115157
    [15] Q. Fu, S. Zhong, K. Shi, Exponential synchronization of memristive neural networks with inertial and nonlinear coupling terms: pinning impulsive control approaches, Appl. Math. Comput., 402 (2021), 126169. https://doi.org/10.1016/j.amc.2021.126169 doi: 10.1016/j.amc.2021.126169
    [16] S. Yang, Z. Guo, J. Wang, Global synchronization of multiple recurrent neural networks with time delays via impulsive interactions, IEEE Trans. Neural Networks Learn. Syst., 28 (2017), 1657–1667. https://doi.org/10.1109/TNNLS.2016.2549703 doi: 10.1109/TNNLS.2016.2549703
    [17] M. D. LaMar, G. D. Smith, Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators, Phys. Rev. E, 81 (2010), 046206. https://doi.org/10.1103/PhysRevE.81.046206 doi: 10.1103/PhysRevE.81.046206
    [18] Y. Zhang, L. Yang, K. I. Kou, Y. Liu, Synchronization of fractional-order quaternion-valued neural networks with image encryption via event-triggered impulsive control, Knowl. Based Syst., 296 (2024), 111953. https://doi.org/10.1016/j.knosys.2024.111953 doi: 10.1016/j.knosys.2024.111953
    [19] Q. Fu, W. Jiang, S. Zhang, K. Shi, Novel adaptive synchronization in finite-time and fixed-time for impulsive complex networks with semi-Markovian switching, ISA Trans., 143 (2023), 360–369. https://doi.org/10.1016/j.isatra.2023.09.010 doi: 10.1016/j.isatra.2023.09.010
    [20] S. Ling, H. Shi, H. Wang, P. X. Liu, Exponential synchronization of delayed coupled neural networks with delay-compensatory impulsive control, ISA Trans., 144 (2024), 133–144. https://doi.org/10.1016/j.isatra.2023.11.015 doi: 10.1016/j.isatra.2023.11.015
    [21] T. Yang, L. B. Yang, C. W. Wu, L. O. Chua, Fuzzy cellular neural networks: applications, IEEE CNNA-96, 1996,225–230. https://doi.org/10.1109/CNNA.1996.566560
    [22] L. O. Chua, L. Yang, Cellular neural networks: theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–1272. https://doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [23] Y. Liu, W. Tang, Exponential stability of fuzzy cellular neural networks with constant and time-varying delays, Phys. Lett. A, 323 (2004), 224–233. https://doi.org/10.1016/j.physleta.2004.01.064 doi: 10.1016/j.physleta.2004.01.064
    [24] T. Huang, Exponential stability of fuzzy cellular neural networks with distributed delay, Phys. Lett. A, 351 (2006), 48–52. https://doi.org/10.1016/j.physleta.2005.10.060 doi: 10.1016/j.physleta.2005.10.060
    [25] A. Abdurahman, H. Jiang, Z. Teng, Finite-time synchronization for fuzzy cellular neural networks with time-varying delays, Fuzzy Sets Syst., 297 (2016), 96–111. https://doi.org/10.1016/j.fss.2015.07.009 doi: 10.1016/j.fss.2015.07.009
    [26] L. Wang, T. Chen, Finite-time anti-synchronization of neural networks with time-varying delays, Neurocomputing, 275 (2018), 1595–1600. https://doi.org/10.1016/j.neucom.2017.09.097 doi: 10.1016/j.neucom.2017.09.097
    [27] C. Hu, J. Yu, Z. Chen, H. Jiang, T. Huang, Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74–83. https://doi.org/10.1016/j.neunet.2017.02.001 doi: 10.1016/j.neunet.2017.02.001
    [28] J. Cao, G. Chen, P. Li, Global synchronization in an array of delayed neural networks with hybrid coupling, IEEE T. Syst. Man Cybern. B, 38 (2008), 488–498. https://doi.org/10.1109/TSMCB.2007.914705 doi: 10.1109/TSMCB.2007.914705
    [29] X. Yang, J. Cao, Exponential synchronization of delayed neural networks with discontinuous activations, IEEE T. Circuits Syst. I, 60 (2013), 2431–2439. https://doi.org/10.1109/TCSI.2013.2244451 doi: 10.1109/TCSI.2013.2244451
    [30] X. Peng, H. Wu, J. Cao, Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 2123–2137. https://doi.org/10.1109/TNNLS.2018.2876726 doi: 10.1109/TNNLS.2018.2876726
    [31] Y. Fan, X. Huang, Z, Wang, J. Xia, Y. Li, Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks, Adv. Differ. Equations, 2018 (2018), 1–15. https://doi.org/10.1186/s13662-018-1800-y doi: 10.1186/s13662-018-1800-y
    [32] F. Zhao, J. Jian, B. Wang, Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks, Fuzzy Sets Syst., 467 (2023), 108578. https://doi.org/10.1016/j.fss.2023.108578 doi: 10.1016/j.fss.2023.108578
    [33] A. A. Kilbas, M. Saigo, R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Special Funct., 15 (2004), 31–49. https://doi.org/10.1080/10652460310001600717 doi: 10.1080/10652460310001600717
    [34] W. Wang, Y. Sun, M. Yuan, Z. Wang, J. Cheng, D. Fan, et al., Projective synchronization of memristive multidirectional associative memory neural networks via self-triggered impulsive control and its application to image protection, Chaos, Soliton. Fract., 150 (2021), 111110. https://doi.org/10.1016/j.chaos.2021.111110 doi: 10.1016/j.chaos.2021.111110
    [35] W. Wang, X. Jia, X. Luo, J. Kurths, M. Yuan, Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication, Chaos, Soliton. Fract., 126 (2019), 85–96. https://doi.org/10.1016/j.chaos.2019.05.041 doi: 10.1016/j.chaos.2019.05.041
    [36] W. Wang, X. Yu, X. Luo, J. Kurths, Synchronization control of memristive multidirectional associative memory neural networks and applications in network security communication, IEEE Access, 6 (2018), 36002–36018. https://doi.org/10.1109/ACCESS.2018.2850156 doi: 10.1109/ACCESS.2018.2850156
    [37] S. Wang, L. Li, H. Peng, Y. Yang, M. Zheng, Global asymptotic synchronization of fractional order multi-linked memristive neural networks with time-varying delays via discontinuous control, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7523
    [38] L. Zhang, Y. Yang, Different impulsive effects on synchronization of fractional-order memristive BAM neural networks, Nonlinear Dyn., 93 (2018), 233–250. https://doi.org/10.1007/s11071-018-4188-z doi: 10.1007/s11071-018-4188-z
    [39] B. Jin, Fractional differential equations, Springer Cham, 2021. https://doi.org/10.1007/978-3-030-76043-4
    [40] J. Henderson, A. Ouahab, Fractional functional differential inclusions with finite delay, Nonlinear Anal., 70 (2009), 2091–2105. https://doi.org/10.1016/j.na.2008.02.111 doi: 10.1016/j.na.2008.02.111
    [41] A. F. Filippov, Differential equations with discontinuous right-hand side, Mat. Sb., 51 (1960), 99–128.
    [42] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1998.
    [43] J. Lu, D. W. C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215–1221. https://doi.org/10.1016/j.automatica.2010.04.005 doi: 10.1016/j.automatica.2010.04.005
    [44] F. Wang, Y. Yang, Fractional order barbalat's lemma and its applications in the stability of fractional order nonlinear systems, Math. Model. Anal., 22 (2017), 503–513. https://doi.org/10.3846/13926292.2017.1329755 doi: 10.3846/13926292.2017.1329755
    [45] T. Yang, L. B. Yang, The global stability of fuzzy cellular neural network, IEEE T. Circuits Syst. I, 43 (1996), 880–883. https://doi.org/10.1109/81.538999 doi: 10.1109/81.538999
    [46] A. Pratap, R. Raja, C. Sowmiya, O. Bagdasar, J. Cao, G. Rajchakit, Global projective lag synchronization of fractional order memristor based BAM neural networks with mixed time varying delays, Asian J. Control, 22 (2020), 570–583. https://doi.org/10.1002/asjc.2075 doi: 10.1002/asjc.2075
    [47] X. Li, Y. Ge, H. Liu, H. Li, J. Fang, New results on synchronization of fractional-order memristor-based neural networks via state feedback control, Complexity, 2020 (2020), 2470972. https://doi.org/10.1155/2020/2470972 doi: 10.1155/2020/2470972
    [48] H. Wu, L. Wang, P. Niu, Y. Wang, Global projective synchronization in finite time of nonidentical fractional-order neural networks based on sliding mode control strategy, Neurocomputing, 235 (2017), 264–273. https://doi.org/10.1016/j.neucom.2017.01.022 doi: 10.1016/j.neucom.2017.01.022
    [49] M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, Y. Zhang, et al., Fixed-time synchronization of memristor-based fuzzy cellular neural network with time-varying delay, J. Franklin Inst., 355 (2018), 6780–6809. https://doi.org/10.1016/j.jfranklin.2018.06.041 doi: 10.1016/j.jfranklin.2018.06.041
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1075) PDF downloads(80) Cited by(4)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog