Research article Special Issues

Local boundedness of weak solutions to elliptic equations with $ p, q- $growth

  • Received: 27 September 2022 Revised: 13 November 2022 Accepted: 13 November 2022 Published: 29 November 2022
  • This article is dedicated to Giuseppe Mingione for his $ 50^{th} $ birthday, a leading expert in the regularity theory and in particular in the subject of this manuscript. In this paper we give conditions for the local boundedness of weak solutions to a class of nonlinear elliptic partial differential equations in divergence form of the type considered below in (1.1), under $ p, q- $growth assumptions. The novelties with respect to the mathematical literature on this topic are the general growth conditions and the explicit dependence of the differential equation on $ u $, other than on its gradient $ Du $ and on the $ x $ variable.

    Citation: Giovanni Cupini, Paolo Marcellini, Elvira Mascolo. Local boundedness of weak solutions to elliptic equations with $ p, q- $growth[J]. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065

    Related Papers:

  • This article is dedicated to Giuseppe Mingione for his $ 50^{th} $ birthday, a leading expert in the regularity theory and in particular in the subject of this manuscript. In this paper we give conditions for the local boundedness of weak solutions to a class of nonlinear elliptic partial differential equations in divergence form of the type considered below in (1.1), under $ p, q- $growth assumptions. The novelties with respect to the mathematical literature on this topic are the general growth conditions and the explicit dependence of the differential equation on $ u $, other than on its gradient $ Du $ and on the $ x $ variable.



    加载中


    [1] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [2] L. Beck, G. Mingione, Lipschitz bounds and non-uniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. https://doi.org/10.1002/cpa.21880 doi: 10.1002/cpa.21880
    [3] P. Bella, M. Schäffner, On the regularity of minimizers for scalar integral functionals with $(p, q)-$ growth, Anal. PDE, 13 (2020), 2241–2257. https://doi.org/10.2140/apde.2020.13.2241 doi: 10.2140/apde.2020.13.2241
    [4] P. Bella, M. Schäffner, Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations, Commun. Pure Appl. Math., 74 (2021), 453–477. https://doi.org/10.1002/cpa.21876 doi: 10.1002/cpa.21876
    [5] S. Biagi, G. Cupini, E. Mascolo, Regularity of quasi-minimizers for non-uniformly elliptic integrals, J. Math. Anal. Appl., 485 (2020), 123838. https://doi.org/10.1016/j.jmaa.2019.123838 doi: 10.1016/j.jmaa.2019.123838
    [6] M. Bildhauer, M. Fuchs, $C^{1, \alpha}$-solutions to non-autonomous anisotropic variational problems, Calc. Var., 24 (2005), 309–340. https://doi.org/10.1007/s00526-005-0327-8 doi: 10.1007/s00526-005-0327-8
    [7] L. Boccardo, P. Marcellini, C. Sbordone, $L^{\infty}$- regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A (7), 4 (1990), 219–225.
    [8] V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven, Boundary regularity for elliptic systems with $p, q-$growth, J. Math. Pure. Appl., 159 (2022), 250–293. https://doi.org/10.1016/j.matpur.2021.12.004 doi: 10.1016/j.matpur.2021.12.004
    [9] P. Bousquet, L. Brasco, Lipschitz regularity for orthotropic functionals with nonstandard growth conditions, Rev. Mat. Iberoam., 36 (2020), 1989–2032. https://doi.org/10.4171/RMI/1189 doi: 10.4171/RMI/1189
    [10] S. S. Byun, J. Oh, Global gradient estimates for non-uniformly elliptic equations, Calc. Var., 56 (2017), 46. https://doi.org/10.1007/s00526-017-1148-2 doi: 10.1007/s00526-017-1148-2
    [11] S. S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE, 13 (2020), 1269–1300. https://doi.org/10.2140/apde.2020.13.1269 doi: 10.2140/apde.2020.13.1269
    [12] M. Carozza, H. Gao, R. Giova, F. Leonetti, A boundedness result for minimizers of some polyconvex integrals, J. Optim. Theory Appl., 178 (2018), 699–725. https://doi.org/10.1007/s10957-018-1335-0 doi: 10.1007/s10957-018-1335-0
    [13] M. Caselli, M. Eleuteri, A. Passarelli di Napoli, Regularity results for a class of obstacle problems with $p, q-$growth conditions, ESAIM: COCV, 27 (2021), 19. https://doi.org/10.1051/cocv/2021017 doi: 10.1051/cocv/2021017
    [14] A. Cianchi, Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 17 (2000), 147–168. https://doi.org/10.1016/S0294-1449(99)00107-9 doi: 10.1016/S0294-1449(99)00107-9
    [15] A. Cianchi, V. G. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Rational Mech. Anal., 212 (2014), 129–177. https://doi.org/10.1007/s00205-013-0705-x doi: 10.1007/s00205-013-0705-x
    [16] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rational Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9
    [17] G. Cupini, F. Leonetti, E. Mascolo, Local boundedness for minimizers of some polyconvex integrals, Arch. Rational Mech. Anal., 224 (2017), 269–289. https://doi.org/10.1007/s00205-017-1074-7 doi: 10.1007/s00205-017-1074-7
    [18] G. Cupini, P. Marcellini, E. Mascolo, Regularity under sharp anisotropic general growth conditions, Discrete Contin. Dyn. Syst. B, 11 (2009), 67–86. https://doi.org/10.3934/dcdsb.2009.11.67 doi: 10.3934/dcdsb.2009.11.67
    [19] G. Cupini, P. Marcellini, E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems, Manuscripta Math., 137 (2012), 287–315. https://doi.org/10.1007/s00229-011-0464-7
    [20] G. Cupini, P. Marcellini, E. Mascolo, Local boundedness of solutions to some anisotropic elliptic systems, In: Recent trends in nonlinear partial differential equations. II. Stationary problems, Providence, RI: Amer. Math. Soc., 2013,169–186. http://doi.org/10.1090/conm/595/11803
    [21] G. Cupini, P. Marcellini, E. Mascolo, Existence and regularity for elliptic equations under $p, q-$growth, Adv. Differential Equations, 19 (2014), 693–724.
    [22] G. Cupini, P. Marcellini, E. Mascolo, Local boundedness of minimizers with limit growth condition, J. Optim. Theory Appl., 166 (2015), 1–22. https://doi.org/10.1007/s10957-015-0722-z
    [23] G. Cupini, P. Marcellini, E. Mascolo, Regularity of minimizers under limit growth conditions, Nonlinear Anal., 153 (2017), 294–310. https://doi.org/10.1016/j.na.2016.06.002 doi: 10.1016/j.na.2016.06.002
    [24] G. Cupini, P. Marcellini, E. Mascolo, Nonuniformly elliptic energy integrals with $p, q-$growth, Nonlinear Anal., 177, Part A (2018), 312–324. https://doi.org/10.1016/j.na.2018.03.018 doi: 10.1016/j.na.2018.03.018
    [25] G. Cupini, P. Marcellini, E. Mascolo, A. Passarelli di Napoli, Lipschitz regularity for degenerate elliptic integrals with $p, q-$growth, Adv. Calc. Var., in press. https://doi.org/10.1515/acv-2020-0120
    [26] C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. https://doi.org/10.1007/s12220-019-00225-z doi: 10.1007/s12220-019-00225-z
    [27] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Rational Mech. Anal., 242 (2021), 973–1057. https://doi.org/10.1007/s00205-021-01698-5 doi: 10.1007/s00205-021-01698-5
    [28] C. De Filippis, M. Piccinini, Borderline global regularity for nonuniformly elliptic systems, Int. Math. Res. Notices, in press. https://doi.org/10.1093/imrn/rnac283
    [29] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25–43.
    [30] M. De Rosa, A. G. Grimaldi, A local boundedness result for a class of obstacle problems with non-standard growth conditions, J. Optim. Theory Appl., 195 (2022), 282–296. https://doi.org/10.1007/s10957-022-02084-1 doi: 10.1007/s10957-022-02084-1
    [31] E. Di Benedetto, U. Gianazza, V. Vespri, Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic $p-$Laplacian type equations, J. Elliptic Parabol. Equ., 2 (2016), 157–169. https://doi.org/10.1007/BF03377399 doi: 10.1007/BF03377399
    [32] T. Di Marco, P. Marcellini, A-priori gradient bound for elliptic systems under either slow or fast growth conditions, Calc. Var., 59 (2020), 120. https://doi.org/10.1007/s00526-020-01769-7 doi: 10.1007/s00526-020-01769-7
    [33] F. G. Düzgun, P. Marcellini, V. Vespri, An alternative approach to the Hölder continuity of solutions to some elliptic equations, Nonlinear Anal. Theor., 94 (2014), 133–141. https://doi.org/10.1016/j.na.2013.08.018 doi: 10.1016/j.na.2013.08.018
    [34] M. Eleuteri, P. Marcellini, E. Mascolo, Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence, Discrete Contin. Dyn. Syst. S, 12 (2019), 251–265. https://doi.org/10.3934/dcdss.2019018 doi: 10.3934/dcdss.2019018
    [35] M. Eleuteri, P. Marcellini, E. Mascolo, Regularity for scalar integrals without structure conditions, Adv. Calc. Var., 13 (2020), 279–300. https://doi.org/10.1515/acv-2017-0037 doi: 10.1515/acv-2017-0037
    [36] M. Eleuteri, P. Marcellini, E. Mascolo, S. Perrotta, Local Lipschitz continuity for energy integrals with slow growth, Annali di Matematica, 201 (2022), 1005–1032. https://doi.org/10.1007/s10231-021-01147-w doi: 10.1007/s10231-021-01147-w
    [37] N. Fusco, C. Sbordone, Local boundedness of minimizers in a limit case, Manuscripta Math., 69 (1990), 19–25. https://doi.org/10.1007/BF02567909 doi: 10.1007/BF02567909
    [38] N. Fusco, C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Commun. Part. Diff. Eq., 18 (1993), 153–167. https://doi.org/10.1080/03605309308820924 doi: 10.1080/03605309308820924
    [39] A. Gentile, Regularity for minimizers of a class of non-autonomous functionals with sub-quadratic growth, Adv. Calc. Var., 15 (2022), 385–399. https://doi.org/10.1515/acv-2019-0092 doi: 10.1515/acv-2019-0092
    [40] M. Giaquinta, E. Giusti, Quasi-minima, Ann. Inst. H. Poincaré C Analyse non-linéaire, 1 (1984), 79–107. https://doi.org/10.1016/S0294-1449(16)30429-2
    [41] E. Giusti, Direct methods in the calculus of variations, River Edge, NJ: World Scientific Publishing Co. Inc., 2003. https://doi.org/10.1142/5002
    [42] T. Granucci, M. Randolfi, Local boundedness of Quasi-minimizers of fully anisotropic scalar variational problems, Manuscripta Math., 160 (2019), 99–152. https://doi.org/10.1007/s00229-018-1055-7 doi: 10.1007/s00229-018-1055-7
    [43] J. Hirsch, M. Schäffner, Growth conditions and regularity, an optimal local boundedness result, Commun. Contemp. Math., 23 (2021), 2050029. https://doi.org/10.1142/S0219199720500297 doi: 10.1142/S0219199720500297
    [44] Ī. M. Kolodīĭ, The boundedness of generalized solutions of elliptic differential equations, Vestnik Moskov. Univ. Ser. I Mat. Meh., 25 (1970), 44–52.
    [45] O. Ladyzhenskaya, N. Ural'tseva, Linear and quasilinear elliptic equations, New York-London: Academic Press, 1968.
    [46] P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
    [47] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q-$growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
    [48] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differ. Equations, 105 (1993), 296–333. https://doi.org/10.1006/jdeq.1993.1091 doi: 10.1006/jdeq.1993.1091
    [49] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 23 (1996), 1–25.
    [50] P. Marcellini, Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl., 90 (1996), 161–181. https://doi.org/10.1007/BF02192251 doi: 10.1007/BF02192251
    [51] P. Marcellini, Regularity under general and $p, q-$growth conditions, Discrete Contin. Dyn. Syst. S, 13 (2020), 2009–2031. https://doi.org/10.3934/dcdss.2020155 doi: 10.3934/dcdss.2020155
    [52] P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl., 501 (2021), 124408. https://doi.org/10.1016/j.jmaa.2020.124408 doi: 10.1016/j.jmaa.2020.124408
    [53] P. Marcellini, Local Lipschitz continuity for $p, q-$PDEs with explicit $u-$dependence, Nonlinear Anal., 226 (2023), 113066. https://doi.org/10.1016/j.na.2022.113066 doi: 10.1016/j.na.2022.113066
    [54] G. Mingione, Regularity of minima: an invitation to the dark side of the Calculus of Variations, Appl. Math., 51 (2006), 355–426. https://doi.org/10.1007/s10778-006-0110-3 doi: 10.1007/s10778-006-0110-3
    [55] G. Mingione, G. Palatucci, Developments and perspectives in nonlinear potential theory, Nonlinear Anal., 194 (2020), 111452. https://doi.org/10.1016/j.na.2019.02.006 doi: 10.1016/j.na.2019.02.006
    [56] G. Mingione, V. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. https://doi.org/10.1016/j.jmaa.2021.125197 doi: 10.1016/j.jmaa.2021.125197
    [57] P. Pucci, R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations, Indiana Univ. Math. J., 57 (2008), 3329–3363. https://doi.org/10.1512/iumj.2008.57.3525 doi: 10.1512/iumj.2008.57.3525
    [58] M. Schäffner, Higher integrability for variational integrals with non-standard growth, Calc. Var., 60 (2021), 77. https://doi.org/10.1007/s00526-020-01907-1 doi: 10.1007/s00526-020-01907-1
    [59] B. Stroffolini, Global boundedness of solutions of anisotropic variational problems, Boll. Un. Mat. Ital. A (7), 5 (1991), 345–352.
    [60] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126–150. https://doi.org/10.1016/0022-0396(84)90105-0 doi: 10.1016/0022-0396(84)90105-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1939) PDF downloads(186) Cited by(17)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog