Research article Special Issues

Existence and nonexistence of traveling waves for the Gross-Pitaevskii equation in tori

  • Received: 02 November 2021 Revised: 07 January 2022 Accepted: 10 January 2022 Published: 11 February 2022
  • In this paper we consider traveling waves for the Gross-Pitaevskii equation which are $ T $-periodic in each variable. We prove that if $ T $ is large enough, there exists a solution as a global minimizer of the corresponding action functional. In the subsonic case, we can use variational methods to prove the existence of a mountain-pass solution. Moreover, we show that for small $ T $ the problem admits only constant solutions.

    Citation: Francisco Javier Martínez Sánchez, David Ruiz. Existence and nonexistence of traveling waves for the Gross-Pitaevskii equation in tori[J]. Mathematics in Engineering, 2023, 5(1): 1-14. doi: 10.3934/mine.2023011

    Related Papers:

  • In this paper we consider traveling waves for the Gross-Pitaevskii equation which are $ T $-periodic in each variable. We prove that if $ T $ is large enough, there exists a solution as a global minimizer of the corresponding action functional. In the subsonic case, we can use variational methods to prove the existence of a mountain-pass solution. Moreover, we show that for small $ T $ the problem admits only constant solutions.



    加载中


    [1] A. Ambrosetti, A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge University Press, 2007. http://dx.doi.org/10.1017/CBO9780511618260
    [2] W. W. Ao, Y. Huang, Y. Li, J. Wei, Generalized Adler-Moser polynomials and multiple vortex rings for the Gross-Pitaevskii equation, SIAM J. Math. Anal., 53 (2021), 6959–6992. http://dx.doi.org/10.1137/21M1394606 doi: 10.1137/21M1394606
    [3] I. V. Barashenkov, V. G. Makhan'kov, Soliton-like "bubbles" in a system of interacting bosons, Phys. Lett. A, 128 (1988), 52–56. http://dx.doi.org/10.1016/0375-9601(88)91042-0 doi: 10.1016/0375-9601(88)91042-0
    [4] J. Bellazzini, D. Ruiz, Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime, arXiv: 1911.02820.
    [5] N. G. Berloff, Quantized vortices, traveling coherent structures and superfluid turbulence, In: Stationary and time dependent Gross-Pitaevskii equations, Providence, RI: Amer. Math. Soc., 2008, 27–54.
    [6] F. Béthuel, P. Gravejat, J. C. Saut, Traveling waves for the Gross-Pitaevskii equation II, Commun. Math. Phys., 285 (2009), 567–651. http://dx.doi.org/10.1007/s00220-008-0614-2 doi: 10.1007/s00220-008-0614-2
    [7] F. Béthuel, P. Gravejat, J. C. Saut, Existence and properties of traveling waves for the Gross-Pitaevskii equation, In: Stationary and time dependent Gross-Pitaevskii equations, Providence, RI: Amer. Math. Soc., 2008, 55–104.
    [8] F. Béthuel, G. Orlandi, D. Smets, Vortex-rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., 6 (2002), 17–94. http://dx.doi.org/10.4171/JEMS/2 doi: 10.4171/JEMS/2
    [9] F. Béthuel, J. C. Saut, Traveling waves for the Gross-Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Théor., 70 (1999), 147–238.
    [10] D. Chiron, Traveling waves for the Gross-Pitaevskii equation in dimension larger than two, Nonlinear Anal. Theor., 58 (2004), 175–204. http://dx.doi.org/10.1016/j.na.2003.10.028 doi: 10.1016/j.na.2003.10.028
    [11] D. Chiron, E. Pacherie, Coercivity for traveling waves in the Gross-Pitaevskii equation in $ \mathbb{R}^2$ for small speed, 2019, arXiv: 1911.03944.
    [12] D. Chiron, E. Pacherie, Smooth branch of traveling waves for the Gross-Pitaevskii equation in $ \mathbb{R}^2$ for small speed, 2019, arXiv: 1911.03433.
    [13] A. Farina, From Ginzburg-Landau to Gross-Pitaevskii, Monatsh. Math., 139 (2003), 265–269. http://dx.doi.org/10.1007/s00605-002-0514-z doi: 10.1007/s00605-002-0514-z
    [14] P. Gravejat, A nonexistence result for supersonic traveling waves in the Gross-Pitaevskii equation, Commun. Math. Phys., 243 (2003), 93–103. http://dx.doi.org/10.1007/s00220-003-0961-y doi: 10.1007/s00220-003-0961-y
    [15] P. Gravejat, Limit at infinity and nonexistence results for sonic traveling waves in the Gross-Pitaevskii equation, Differential Integral Equations, 17 (2004), 1213–1232.
    [16] P. Gérard, The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 765–779. http://dx.doi.org/10.1016/J.ANIHPC.2005.09.004 doi: 10.1016/J.ANIHPC.2005.09.004
    [17] P. Gérard, The Gross-Pitaevskii equation in the energy space, In: Stationary and time dependent Gross-Pitaevskii equations, Providence, RI: Amer. Math. Soc., 2008,129–148.
    [18] E. P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys., 4 (1963), 195–207. http://dx.doi.org/10.1063/1.1703944 doi: 10.1063/1.1703944
    [19] R. L. Jerrard, D. Smets, Leapfrogging vortex rings for the three-dimensional Gross-Pitaevskii equation, Ann. PDE, 4 (2018), 4. http://dx.doi.org/10.1007/s40818-017-0040-x doi: 10.1007/s40818-017-0040-x
    [20] C. A. Jones, P. H. Roberts, Motions in a Bose condensate IV: axisymmetric solitary waves, J. Phys. A: Math. Gen., 15 (1982), 2599. http://dx.doi.org/10.1088/0305-4470/15/8/036 doi: 10.1088/0305-4470/15/8/036
    [21] C. A. Jones, S. J. Putterman, P. H. Roberts, Motions in a Bose condensate V: stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions, J. Phys. A: Math. Gen., 19 (1986), 2991. http://dx.doi.org/10.1088/0305-4470/19/15/023 doi: 10.1088/0305-4470/19/15/023
    [22] R. Killip, T. Oh, O. Pocovnicu, M. Vişan, Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrödinger equations with nonvanishing boundary conditions, Math. Res. Lett., 19 (2012), 969–986. http://dx.doi.org/10.4310/MRL.2012.v19.n5.a1 doi: 10.4310/MRL.2012.v19.n5.a1
    [23] Y. S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep., 298 (1998), 81–197. http://dx.doi.org/10.1016/S0370-1573(97)00073-2 doi: 10.1016/S0370-1573(97)00073-2
    [24] Y. S. Kivshar, D. E. Pelinovsky, Y. A. Stepanyants, Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E, 51 (1995), 5016–5026. http://dx.doi.org/10.1103/PhysRevE.51.5016 doi: 10.1103/PhysRevE.51.5016
    [25] T. Lin, J. Wei, J. Yang, Vortex rings for the Gross-Pitaevskii equation in $ \mathbb{R}^3$, J. Math. Pures Appl., 100 (2013), 69–112. http://dx.doi.org/10.1016/j.matpur.2012.10.012 doi: 10.1016/j.matpur.2012.10.012
    [26] Y. Liu, J. Wei, Multi-vortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials, SIAM J. Math. Anal., 52 (2020), 3546–3579. http://dx.doi.org/10.1137/18M119940X doi: 10.1137/18M119940X
    [27] M. Mariş, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Ann. Math., 178 (2013), 107–182. http://dx.doi.org/10.4007/annals.2013.178.1.2 doi: 10.4007/annals.2013.178.1.2
    [28] L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 13 (961), 451–454.
    [29] W. A. Strauss, Partial differential equations: an introduction, John Wiley & Sons, 1992.
    [30] P. E. Zhidkov, The Cauchy problem for the nonlinear Schrödinger equation, Dubna: Joint Inst. Nucl. Res., 1987,901–923.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1711) PDF downloads(194) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog