In this paper we consider traveling waves for the Gross-Pitaevskii equation which are $ T $-periodic in each variable. We prove that if $ T $ is large enough, there exists a solution as a global minimizer of the corresponding action functional. In the subsonic case, we can use variational methods to prove the existence of a mountain-pass solution. Moreover, we show that for small $ T $ the problem admits only constant solutions.
Citation: Francisco Javier Martínez Sánchez, David Ruiz. Existence and nonexistence of traveling waves for the Gross-Pitaevskii equation in tori[J]. Mathematics in Engineering, 2023, 5(1): 1-14. doi: 10.3934/mine.2023011
In this paper we consider traveling waves for the Gross-Pitaevskii equation which are $ T $-periodic in each variable. We prove that if $ T $ is large enough, there exists a solution as a global minimizer of the corresponding action functional. In the subsonic case, we can use variational methods to prove the existence of a mountain-pass solution. Moreover, we show that for small $ T $ the problem admits only constant solutions.
[1] | A. Ambrosetti, A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge University Press, 2007. http://dx.doi.org/10.1017/CBO9780511618260 |
[2] | W. W. Ao, Y. Huang, Y. Li, J. Wei, Generalized Adler-Moser polynomials and multiple vortex rings for the Gross-Pitaevskii equation, SIAM J. Math. Anal., 53 (2021), 6959–6992. http://dx.doi.org/10.1137/21M1394606 doi: 10.1137/21M1394606 |
[3] | I. V. Barashenkov, V. G. Makhan'kov, Soliton-like "bubbles" in a system of interacting bosons, Phys. Lett. A, 128 (1988), 52–56. http://dx.doi.org/10.1016/0375-9601(88)91042-0 doi: 10.1016/0375-9601(88)91042-0 |
[4] | J. Bellazzini, D. Ruiz, Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime, arXiv: 1911.02820. |
[5] | N. G. Berloff, Quantized vortices, traveling coherent structures and superfluid turbulence, In: Stationary and time dependent Gross-Pitaevskii equations, Providence, RI: Amer. Math. Soc., 2008, 27–54. |
[6] | F. Béthuel, P. Gravejat, J. C. Saut, Traveling waves for the Gross-Pitaevskii equation II, Commun. Math. Phys., 285 (2009), 567–651. http://dx.doi.org/10.1007/s00220-008-0614-2 doi: 10.1007/s00220-008-0614-2 |
[7] | F. Béthuel, P. Gravejat, J. C. Saut, Existence and properties of traveling waves for the Gross-Pitaevskii equation, In: Stationary and time dependent Gross-Pitaevskii equations, Providence, RI: Amer. Math. Soc., 2008, 55–104. |
[8] | F. Béthuel, G. Orlandi, D. Smets, Vortex-rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., 6 (2002), 17–94. http://dx.doi.org/10.4171/JEMS/2 doi: 10.4171/JEMS/2 |
[9] | F. Béthuel, J. C. Saut, Traveling waves for the Gross-Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Théor., 70 (1999), 147–238. |
[10] | D. Chiron, Traveling waves for the Gross-Pitaevskii equation in dimension larger than two, Nonlinear Anal. Theor., 58 (2004), 175–204. http://dx.doi.org/10.1016/j.na.2003.10.028 doi: 10.1016/j.na.2003.10.028 |
[11] | D. Chiron, E. Pacherie, Coercivity for traveling waves in the Gross-Pitaevskii equation in $ \mathbb{R}^2$ for small speed, 2019, arXiv: 1911.03944. |
[12] | D. Chiron, E. Pacherie, Smooth branch of traveling waves for the Gross-Pitaevskii equation in $ \mathbb{R}^2$ for small speed, 2019, arXiv: 1911.03433. |
[13] | A. Farina, From Ginzburg-Landau to Gross-Pitaevskii, Monatsh. Math., 139 (2003), 265–269. http://dx.doi.org/10.1007/s00605-002-0514-z doi: 10.1007/s00605-002-0514-z |
[14] | P. Gravejat, A nonexistence result for supersonic traveling waves in the Gross-Pitaevskii equation, Commun. Math. Phys., 243 (2003), 93–103. http://dx.doi.org/10.1007/s00220-003-0961-y doi: 10.1007/s00220-003-0961-y |
[15] | P. Gravejat, Limit at infinity and nonexistence results for sonic traveling waves in the Gross-Pitaevskii equation, Differential Integral Equations, 17 (2004), 1213–1232. |
[16] | P. Gérard, The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 765–779. http://dx.doi.org/10.1016/J.ANIHPC.2005.09.004 doi: 10.1016/J.ANIHPC.2005.09.004 |
[17] | P. Gérard, The Gross-Pitaevskii equation in the energy space, In: Stationary and time dependent Gross-Pitaevskii equations, Providence, RI: Amer. Math. Soc., 2008,129–148. |
[18] | E. P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys., 4 (1963), 195–207. http://dx.doi.org/10.1063/1.1703944 doi: 10.1063/1.1703944 |
[19] | R. L. Jerrard, D. Smets, Leapfrogging vortex rings for the three-dimensional Gross-Pitaevskii equation, Ann. PDE, 4 (2018), 4. http://dx.doi.org/10.1007/s40818-017-0040-x doi: 10.1007/s40818-017-0040-x |
[20] | C. A. Jones, P. H. Roberts, Motions in a Bose condensate IV: axisymmetric solitary waves, J. Phys. A: Math. Gen., 15 (1982), 2599. http://dx.doi.org/10.1088/0305-4470/15/8/036 doi: 10.1088/0305-4470/15/8/036 |
[21] | C. A. Jones, S. J. Putterman, P. H. Roberts, Motions in a Bose condensate V: stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions, J. Phys. A: Math. Gen., 19 (1986), 2991. http://dx.doi.org/10.1088/0305-4470/19/15/023 doi: 10.1088/0305-4470/19/15/023 |
[22] | R. Killip, T. Oh, O. Pocovnicu, M. Vişan, Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrödinger equations with nonvanishing boundary conditions, Math. Res. Lett., 19 (2012), 969–986. http://dx.doi.org/10.4310/MRL.2012.v19.n5.a1 doi: 10.4310/MRL.2012.v19.n5.a1 |
[23] | Y. S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep., 298 (1998), 81–197. http://dx.doi.org/10.1016/S0370-1573(97)00073-2 doi: 10.1016/S0370-1573(97)00073-2 |
[24] | Y. S. Kivshar, D. E. Pelinovsky, Y. A. Stepanyants, Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E, 51 (1995), 5016–5026. http://dx.doi.org/10.1103/PhysRevE.51.5016 doi: 10.1103/PhysRevE.51.5016 |
[25] | T. Lin, J. Wei, J. Yang, Vortex rings for the Gross-Pitaevskii equation in $ \mathbb{R}^3$, J. Math. Pures Appl., 100 (2013), 69–112. http://dx.doi.org/10.1016/j.matpur.2012.10.012 doi: 10.1016/j.matpur.2012.10.012 |
[26] | Y. Liu, J. Wei, Multi-vortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials, SIAM J. Math. Anal., 52 (2020), 3546–3579. http://dx.doi.org/10.1137/18M119940X doi: 10.1137/18M119940X |
[27] | M. Mariş, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Ann. Math., 178 (2013), 107–182. http://dx.doi.org/10.4007/annals.2013.178.1.2 doi: 10.4007/annals.2013.178.1.2 |
[28] | L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 13 (961), 451–454. |
[29] | W. A. Strauss, Partial differential equations: an introduction, John Wiley & Sons, 1992. |
[30] | P. E. Zhidkov, The Cauchy problem for the nonlinear Schrödinger equation, Dubna: Joint Inst. Nucl. Res., 1987,901–923. |