Research article

Finite element algorithms for nonlocal minimal graphs

  • Received: 26 May 2021 Accepted: 07 July 2021 Published: 20 July 2021
  • We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter with piecewise linear finite elements. For the computation of the discrete solutions, we propose and study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation. We also present a wide variety of numerical experiments that illustrate qualitative and quantitative features of fractional minimal graphs and the associated discrete problems.

    Citation: Juan Pablo Borthagaray, Wenbo Li, Ricardo H. Nochetto. Finite element algorithms for nonlocal minimal graphs[J]. Mathematics in Engineering, 2022, 4(2): 1-29. doi: 10.3934/mine.2022016

    Related Papers:

  • We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter with piecewise linear finite elements. For the computation of the discrete solutions, we propose and study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation. We also present a wide variety of numerical experiments that illustrate qualitative and quantitative features of fractional minimal graphs and the associated discrete problems.



    加载中


    [1] G. Acosta, F. M. Bersetche, J. P. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian, Comput. Math. Appl., 74 (2017), 784–816. doi: 10.1016/j.camwa.2017.05.026
    [2] G. Acosta, J. P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55 (2017), 472–495. doi: 10.1137/15M1033952
    [3] M. Ainsworth, W. McLean, T. Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling, SIAM J. Numer. Anal., 36 (1999), 1901–1932. doi: 10.1137/S0036142997330809
    [4] I. Babuška, R. B. Kellogg, J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math., 33 (1979), 447–471. doi: 10.1007/BF01399326
    [5] B. Barrios, A. Figalli, E. Valdinoci, Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (2014), 609–639.
    [6] J. P. Borthagaray, P. Ciarlet Jr, On the convergence in ${H}^1$-norm for the fractional Laplacian, SIAM J. Numer. Anal., 57 (2019), 1723–1743. doi: 10.1137/18M1221436
    [7] J. P. Borthagaray, W. Li, R. H. Nochetto, Finite element discretizations for nonlocal minimal graphs: Convergence, Nonlinear Anal., 189 (2019), 111566. doi: 10.1016/j.na.2019.06.025
    [8] J. P. Borthagaray, W. Li, R. H. Nochetto, Linear and nonlinear fractional elliptic problems, In: 75 Years of Mathematics of Computation, Providence, RI: Amer. Math. Soc., 2020, 69–92.
    [9] J. P. Borthagaray, R. H. Nochetto, A. J. Salgado, Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian, Math. Mod. Meth. Appl. Sci., 29 (2019), 2679–2717. doi: 10.1142/S021820251950057X
    [10] J. P. Borthagaray, L. M. Del Pezzo, S. Martínez, Finite element approximation for the fractional eigenvalue problem, J. Sci. Comput., 77 (2018), 308–329. doi: 10.1007/s10915-018-0710-1
    [11] X. Cabré, M. Cozzi, A gradient estimate for nonlocal minimal graphs, Duke Math. J., 168 (2019), 775–848.
    [12] L. Caffarelli, J.-M. Roquejoffre, O. Savin, Nonlocal minimal surfaces, Commun. Pure Appl. Math., 63 (2010), 1111–1144.
    [13] A. Chernov, T. von Petersdorff, Ch. Schwab, Exponential convergence of hp quadrature for integral operators with Gevrey kernels, ESAIM Math. Mod. Num. Anal., 45 (2011), 387–422. doi: 10.1051/m2an/2010061
    [14] S. Dipierro, O. Savin, E. Valdinoci, Graph properties for nonlocal minimal surfaces, Calc. Var., 55 (2016), 86. doi: 10.1007/s00526-016-1020-9
    [15] S. Dipierro, O. Savin, E. Valdinoci, Boundary behavior of nonlocal minimal surfaces, J. Funct. Anal., 272 (2017), 1791–1851. doi: 10.1016/j.jfa.2016.11.016
    [16] S. Dipierro, O. Savin, E. Valdinoci, Boundary properties of fractional objects: flexibility of linear equations and rigidity of minimal graphs, J. Reine Angew. Math., 2020 (2020), 121–164. doi: 10.1515/crelle-2019-0045
    [17] S. Dipierro, O. Savin, E. Valdinoci, Nonlocal minimal graphs in the plane are generically sticky, Commun. Math. Phys., 376 (2020), 2005–2063. doi: 10.1007/s00220-020-03771-8
    [18] G. Dziuk, Numerical schemes for the mean curvature flow of graphs, In: IUTAM symposium on variations of domain and free-boundary problems in solid mechanics, Springer, 1999, 63–70.
    [19] A. Figalli, E. Valdinoci, Regularity and Bernstein-type results for nonlocal minimal surfaces, J. Reine Angew. Math., 2017 (2017), 263–273.
    [20] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math., 12 (1974), 73–86. doi: 10.1007/BF01166235
    [21] P. Grisvard, Elliptic problems in nonsmooth domains, Boston, MA: Pitman (Advanced Publishing Program), 1985.
    [22] C. Imbert, Level set approach for fractional mean curvature flows, Interface. Free Bound., 11 (2009), 153–176.
    [23] C. T. Kelley, Iterative methods for optimization, SIAM, 1999.
    [24] L. Lombardini, Approximation of sets of finite fractional perimeter by smooth sets and comparison of local and global $ s $-minimal surfaces, Interface. Free Bound., 20 (2018), 261–296. doi: 10.4171/IFB/402
    [25] L. Lombardini, Minimization problems involving nonlocal functionals: nonlocal minimal surfaces and a free boundary problem, PhD thesis, Universita degli Studi di Milano and Universite de Picardie Jules Verne, 2018.
    [26] B. Merriman, J. K. Bence, S. Osher, Diffusion generated motion by mean curvature, AMS Selected Lectures in Mathematics Series: Computational Crystal Growers Workshop, 1992.
    [27] S. A. Sauter, C. Schwab, Boundary element methods, Berlin: Springer-Verlag, 2011.
    [28] O. Savin, E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479–500. doi: 10.1016/j.anihpc.2012.01.006
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1800) PDF downloads(105) Cited by(2)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog