We investigate the spatiotemporal dynamics of a tri-trophic food chain model incorporating a strong Allee effect on the prey and a fear effect on the middle predator. The model's well-posedness is established through the positivity and boundedness of solutions. We derive all equilibria and examine their local stability, revealing saddle-node and transcritical bifurcations under varying parameter conditions. The analysis demonstrates how shifts in the Allee threshold and fear intensity induce bistability, coexistence, or extinction. Numerical simulations highlight diffusion-driven instabilities and complex Turing patterns, including labyrinthine formations and unexpected "leaser slime" structures—resembling those observed in fungi and algae in aquatic systems. These findings reveal the crucial role of behavioral and ecological feedbacks in shaping pattern formation and species persistence.
Citation: Swati Mishra, Anal Chatterjee, Ranjit Kumar Upadhyay, Mainul Haque. A detailed analysis of the spatial dynamics of a food-chain model with Allee and fear effect[J]. Mathematical Biosciences and Engineering, 2025, 22(12): 3154-3200. doi: 10.3934/mbe.2025117
We investigate the spatiotemporal dynamics of a tri-trophic food chain model incorporating a strong Allee effect on the prey and a fear effect on the middle predator. The model's well-posedness is established through the positivity and boundedness of solutions. We derive all equilibria and examine their local stability, revealing saddle-node and transcritical bifurcations under varying parameter conditions. The analysis demonstrates how shifts in the Allee threshold and fear intensity induce bistability, coexistence, or extinction. Numerical simulations highlight diffusion-driven instabilities and complex Turing patterns, including labyrinthine formations and unexpected "leaser slime" structures—resembling those observed in fungi and algae in aquatic systems. These findings reveal the crucial role of behavioral and ecological feedbacks in shaping pattern formation and species persistence.
| [1] |
G. Q. Sun, H. T. Zhang, J. S. Wang, J. Li, Y. Wang, L. Li, et al, Mathematical modeling and mechanisms of pattern formation in ecological systems: A review, Nonlinear Dyn., 104 (2021), 1677–1696. https://doi.org/10.1007/s11071-021-06314-5 doi: 10.1007/s11071-021-06314-5
|
| [2] | D. O'Sullivan, G. L. Perry, Spatial Simulation: Exploring Pattern and Process, John Wiley & Sons, 2023. |
| [3] |
J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855–867. https://doi.org/10.2307/1936296 doi: 10.2307/1936296
|
| [4] |
O. D. Feo, S. Rinaldi, Yield and dynamics of tritrophic food chains, Am. Nat., 150 (1997), 328–345. https://doi.org/10.1086/286068 doi: 10.1086/286068
|
| [5] |
S. Gakkhar, R. K. Naji, Order and chaos in predator to prey ratio-dependent food chain, Chaos Solitons Fractals, 18 (2003), 229–239. https://doi.org/10.1016/S0960-0779(02)00642-2 doi: 10.1016/S0960-0779(02)00642-2
|
| [6] |
S. B. Hsu, T. W. Hwang, Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci., 181 (2003), 55–83. https://doi.org/10.1016/S0025-5564(02)00127-X doi: 10.1016/S0025-5564(02)00127-X
|
| [7] | S. Pathak, A. Maiti, G. P. Samanta. Rich dynamics of a food chain model with Hassell-Varley type functional responses, Appl. Math. Comput. 208 (2009), 303–317. https://doi.org/10.1016/j.amc.2008.12.015 |
| [8] |
R. K. Upadhyay, R. K. Naji, Dynamics of a three species food chain model with Crowley-Martin type functional response, Chaos Solitons Fractals, 42 (2009), 1337–1346. https://doi.org/10.1016/j.chaos.2009.03.020 doi: 10.1016/j.chaos.2009.03.020
|
| [9] |
M. Haque, N. Ali, S. Chakravarty, Study of a tri-trophic prey-dependent food chain model of interacting populations, Math. Biosci., 246 (2013), 55–71. https://doi.org/10.1016/j.mbs.2013.07.021 doi: 10.1016/j.mbs.2013.07.021
|
| [10] |
D. Pattanayak, A. Mishra, S. K. Dana, N. Bairagi, Bistability in a tri-trophic food chain model: Basin stability perspective, Chaos, 31 (2021), 073124. https://doi.org/10.1063/5.0054347 doi: 10.1063/5.0054347
|
| [11] |
W. Feng, N. Rocco, M. Freeze, X. Lu, Mathematical analysis on an extended Rosenzweig-MacArthur model of tri-trophic food chain, Discrete Contin. Dyn. Syst. S, 7 (2014), 1215–1230. https://doi.org/10.3934/dcdss.2014.7.1215 doi: 10.3934/dcdss.2014.7.1215
|
| [12] |
Y. A. Kuznetsov, O. De Feo, S. Rinaldi, Belyakov homoclinic bifurcations in a tritrophic food chain model, SIAM J. Appl. Math., 62 (2001), 462–487. https://doi.org/10.1137/S0036139900378542 doi: 10.1137/S0036139900378542
|
| [13] |
S. Lv, M. Zhao, The dynamic complexity of a three species food chain model, Chaos Solitons Fractals, 37 (2008), 1469–1480. https://doi.org/10.1016/j.chaos.2006.10.057 doi: 10.1016/j.chaos.2006.10.057
|
| [14] |
B. W. Kooi, L. D. J Kuijper, M. P. Boer, S. A. L. M. Kooijman, Numerical bifurcation analysis of a tri-trophic food web with omnivory, Math. Biosci., 177 (2002), 201–228. https://doi.org/10.1016/S0025-5564(01)00111-0 doi: 10.1016/S0025-5564(01)00111-0
|
| [15] |
Y. Chen, J. Yu, C. Sun, Stability and Hopf bifurcation analysis in a three-level food chain system with delay, Chaos Solitons Fractals, 31 (2007), 683–694. https://doi.org/10.1016/j.chaos.2005.10.020 doi: 10.1016/j.chaos.2005.10.020
|
| [16] |
J. G. Wang, X. Y. Meng, L. Lv, J. Li, Stability and bifurcation analysis of a Beddington-DeAngelis prey-predator model with fear effect, prey refuge and harvesting, Int. J. Bifurc. Chaos, 33 (2023), 2350013. https://doi.org/10.1142/S021812742350013X doi: 10.1142/S021812742350013X
|
| [17] |
Z. Liang, X. Meng, Stability and Hopf bifurcation of a multiple delayed predator-prey system with fear effect, prey refuge and Crowley–Martin function, Chaos Solitons Fractals, 175 (2023), 113955. https://doi.org/10.1016/j.chaos.2023.113955 doi: 10.1016/j.chaos.2023.113955
|
| [18] |
J. C. Gascoigne, R. N. Lipcius, Allee effects driven by predation, J. Appl. Ecol., 41 (2004), 801–810. https://doi.org/10.1111/j.0021-8901.2004.00944.x doi: 10.1111/j.0021-8901.2004.00944.x
|
| [19] | J. M. Drake, A. M. Kramer, Allee effects, Nat. Educ. Knowl., 3 (2011), 2. |
| [20] | E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. |
| [21] | P. Hartman, Theory of Ordinary Differential Equations, Society for Industrial and Applied Mathematics, 2002. |
| [22] | L. Perko, Differential Equations and Dynamical Systems, Springer Science & Business Media, 2013 |
| [23] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Science & Business Media, 2012 |
| [24] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 2006. |
| [25] | L. C. Evans, Partial Differential, American Mathematical Society, RI, USA, 2010. |
| [26] | J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer Science & Business Media, 2012. |
| [27] | J. D. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications, Springer New York, 2003. https://doi.org/10.1007/b98869 |
| [28] |
M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851. https://doi.org/10.1103/RevModPhys.65.851 doi: 10.1103/RevModPhys.65.851
|
| [29] | V. I. Arnold, Ordinary Differential Equations, Springer Science & Business Media, 1992. |
| [30] |
B. Xie, Impact of the fear and Allee effect on a Holling type Ⅱ prey-predator model, Adv. Differ. Equations, 2021 (2021), 464. https://doi.org/10.1186/s13662-021-03592-6 doi: 10.1186/s13662-021-03592-6
|
| [31] |
X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
|
| [32] |
M. Haque, M. S. Rahman, E. Venturino, B. L. Li, Effect of a functional response-dependent prey refuge in a predator-prey model, Ecol. Complex., 20 (2014), 248–256. https://doi.org/10.1016/j.ecocom.2014.04.001 doi: 10.1016/j.ecocom.2014.04.001
|
| [33] |
M. S. Rahman, S. Pramanik, E. Venturino, An ecoepidemic model with healthy prey herding and infected prey drifting away, Nonlinear Anal., 28 (2023), 326–364. https://doi.org/10.15388/namc.2023.28.31549 doi: 10.15388/namc.2023.28.31549
|
| [34] |
B. Mukhopadhyay, R. Bhattacharyya, A stage-structured food chain model with stage dependent predation: Existence of codimension one and codimension two bifurcations, Nonlinear Anal. Real World Appl., 12 (2011), 3056–3072. https://doi.org/10.1016/j.nonrwa.2011.05.007 doi: 10.1016/j.nonrwa.2011.05.007
|
| [35] |
M. Haque, Existence of complex patterns in the Beddington-DeAngelis predator-prey model, Math. Biosci., 239 (2012), 179–190. https://doi.org/10.1016/j.mbs.2012.05.006 doi: 10.1016/j.mbs.2012.05.006
|
| [36] |
L. N. Guin, M. Haque, P. K. Mandal, The spatial patterns through diffusion-driven instability in a predator-prey model, Appl. Math. Modell., 36 (2012), 1825–1841. https://doi.org/10.1016/j.apm.2011.05.055 doi: 10.1016/j.apm.2011.05.055
|
| [37] |
N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83–99. https://doi.org/10.1016/0022-5193(79)90258-3 doi: 10.1016/0022-5193(79)90258-3
|
| [38] |
E. H. Kerner, A statistical mechanics of interacting biological species, Bull. Math. Biophys., 19 (1957), 121–146. https://doi.org/10.1007/BF02477883 doi: 10.1007/BF02477883
|
| [39] |
E. H. Kerner, Further considerations on the statistical mechanics of biological associations, Bull. Math. Biophys., 21 (1959), 217–255. https://doi.org/10.1007/BF02476361 doi: 10.1007/BF02476361
|
| [40] |
P. Schaap, Regulation of size and pattern in the cellular slime molds, Differentiation, 33 (1987), 1–16. https://doi.org/10.1111/j.1432-0436.1987.tb01535.x doi: 10.1111/j.1432-0436.1987.tb01535.x
|
| [41] |
J. T. Bonner, The pattern of differentiation in amoeboid slime molds, Am. Nat., 86 (1952), 79–89. https://doi.org/10.1086/281707 doi: 10.1086/281707
|
| [42] |
S. L. Stephenson, J. C. Landolt, Dictyostelid cellular slime molds in canopy soils of tropical forests, Biotropica, 30 (1998), 657–661. https://doi.org/10.1111/j.1744-7429.1998.tb00105.x doi: 10.1111/j.1744-7429.1998.tb00105.x
|
| [43] |
A. Madzvamuse, H. S. Ndakwo, R. Barreira, Cross-diffusion-driven instability for reaction-diffusion systems: Analysis and simulations, J. Math. Biol., 70 (2025), 709–743. https://doi.org/10.1007/s00285-014-0779-6 doi: 10.1007/s00285-014-0779-6
|
| [44] |
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
|
| [45] |
M. L. Rosenzweig, R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209–223. https://doi.org/10.1086/282272 doi: 10.1086/282272
|
| [46] |
F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 doi: 10.1016/S0169-5347(99)01683-3
|
| [47] |
S. K. Sasmal, Population dynamics with multiple allee effects induced by fear factors–A mathematical study on prey-predator interactions, Appl. Math. Modell., 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.021 doi: 10.1016/j.apm.2018.07.021
|
| [48] |
S. Mandal, F. A. Basir, S. Ray, Additive Allee effect of top predator in a mathematical model of three species food chain, Energy Ecol. Environ., 6 (2021), 451–461. https://doi.org/10.1007/s40974-020-00200-3 doi: 10.1007/s40974-020-00200-3
|