We present an individual-level probabilistic model to evaluate the effectiveness of two traditional control measures for infectious diseases: the isolation of symptomatic individuals and contact tracing (plus subsequent quarantine). The model allows us to calculate the reproduction number and the generation-time distribution under the two control measures. The model is related to the work of Fraser et al. on the same topic [
Citation: Ye Xia. An individual-level probabilistic model and solution for control of infectious diseases[J]. Mathematical Biosciences and Engineering, 2024, 21(10): 7253-7277. doi: 10.3934/mbe.2024320
We present an individual-level probabilistic model to evaluate the effectiveness of two traditional control measures for infectious diseases: the isolation of symptomatic individuals and contact tracing (plus subsequent quarantine). The model allows us to calculate the reproduction number and the generation-time distribution under the two control measures. The model is related to the work of Fraser et al. on the same topic [
[1] | C. Fraser, S. Riley, R. M. Anderson, N. M. Ferguson, Factors that make an infectious disease outbreak controllable, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 6146–6151. https://doi.org/10.1073/pnas.0307506101 doi: 10.1073/pnas.0307506101 |
[2] | L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, et al., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368 (2020), eabb6936. https://doi.org/10.1126/science.abb6936 doi: 10.1126/science.abb6936 |
[3] | J. D. Murray, Mathematical Biology, 3rd edition, Springer-Verlag, 2002. |
[4] | C. Barril, À. Calsina, S. Cuadrado, J. Ripoll, Reproduction number for an age of infection structured model, Math. Model. Nat. Phenom., 16 (2021), 42. https://doi.org/10.1051/mmnp/2021033 doi: 10.1051/mmnp/2021033 |
[5] | G. Aldis, M. Roberts, An integral equation model for the control of a smallpox outbreak, Math. Biosci., 195 (2005), 1–22. https://doi.org/10.1016/j.mbs.2005.01.006 doi: 10.1016/j.mbs.2005.01.006 |
[6] | D. Klinkenberg, C. Fraser, H. Heesterbeek, The effectiveness of contact tracing in emerging epidemics, PLoS One, 1 (2006), 1–7. https://doi.org/10.1371/journal.pone.0000012 doi: 10.1371/journal.pone.0000012 |
[7] | J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Global Health, 8 (2020), e488–e496. https://doi.org/10.1016/S2214-109X(20)30074-7 doi: 10.1016/S2214-109X(20)30074-7 |
[8] | C. M. Peak, L. M. Childs, Y. H. Grad, C. O. Buckee, Comparing nonpharmaceutical interventions for containing emerging epidemics, Proc. Natl. Acad. Sci. U.S.A., 114 (2017), 4023–4028. https://doi.org/10.1073/pnas.1616438114 doi: 10.1073/pnas.1616438114 |
[9] | J. Müller, M. Kretzschmar, K. Dietz, Contact tracing in stochastic and deterministic epidemic models, Math. Biosci., 164 (2000), 39–64. https://doi.org/10.1016/S0025-5564(99)00061-9 doi: 10.1016/S0025-5564(99)00061-9 |
[10] | J. Müller, V. Hösel, Contact tracing & super-spreaders in the branching-process model, J. Math. Biol., 86 (2023), 24. https://doi.org/10.1007/s00285-022-01857-6 doi: 10.1007/s00285-022-01857-6 |
[11] | P. Jagers, Branching Processes with Biological Applications, John Wiley & Sons, 1975. |
[12] | M. E. Kretzschmar, G. Rozhnova, M. C. J. Bootsma, M. van Boven, J. H. H. M. van de Wijgert, M. J. M. Bonten, Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study, Lancet Public Health, 5 (2020), e452–e459. https://doi.org/10.1016/S2468-2667(20)30157-2 doi: 10.1016/S2468-2667(20)30157-2 |
[13] | F. G. Ball, E. S. Knock, P. D. O'Neill, Threshold behavior of emerging epidemics featuring contact tracing, Adv. Appl. Probab., 43 (2011), 1048–1065. https://doi.org/10.1239/aap/1324045698 doi: 10.1239/aap/1324045698 |
[14] | J. Ripoll, J. Font, A discrete model for the evolution of infection prior to symptom onset, Mathematics, 11 (2023), 1092. https://doi.org/10.3390/math11051092 doi: 10.3390/math11051092 |
[15] | C. Browne, H. Gulbudak, G. Webb, Modeling contact tracing in outbreaks with application to Ebola, J. Theor. Biol., 384 (2015), 33–49. https://doi.org/10.1016/j.jtbi.2015.08.004 doi: 10.1016/j.jtbi.2015.08.004 |
[16] | A. Mubayi, C. K. Zaleta, M. Martcheva, C. Castillo-Chávez, A cost-based comparison of quarantine strategies for new emerging diseases, Math. Biosci. Eng., 7 (2010), 687–717. https://doi.org/10.3934/mbe.2010.7.687 doi: 10.3934/mbe.2010.7.687 |
[17] | S. S. Nadim, I. Ghosh, J. Chattopadhyay, Short-term predictions and prevention strategies for COVID-19: A model-based study, Appl. Math. Comput., 404 (2021), 126251. https://doi.org/10.1016/j.amc.2021.126251 doi: 10.1016/j.amc.2021.126251 |
[18] | D. Kumar Das, A. Khatua, T. Kar, S. Jana, The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India, Appl. Math. Comput., 404 (2021), 126207. https://doi.org/10.1016/j.amc.2021.126207 doi: 10.1016/j.amc.2021.126207 |
[19] | M. M. U. R. Khan, M. R. Arefin, J. Tanimoto, Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach, Appl. Math. Comput., 432 (2022), 127365. https://doi.org/10.1016/j.amc.2022.127365 doi: 10.1016/j.amc.2022.127365 |
[20] | R. K. Rai, A. K. Misra, Y. Takeuchi, Modeling the impact of sanitation and awareness on the spread of infectious diseases, Math. Biosci. Eng., 16 (2019), 667–700. https://doi.org/10.3934/mbe.2019032 doi: 10.3934/mbe.2019032 |
[21] | F. Zhang, Z. Jin, Effect of travel restrictions, contact tracing and vaccination on control of emerging infectious diseases: transmission of COVID-19 as a case study, Math. Biosci. Eng., 19 (2022), 3177–3201. https://doi.org/10.3934/mbe.2022147 doi: 10.3934/mbe.2022147 |
[22] | T. Kobayashi, H. Nishiura, Prioritizing COVID-19 vaccination. part 2: Real-time comparison between single-dose and double-dose in Japan, Math. Biosci. Eng., 19 (2022), 7410–7424. https://doi.org/10.3934/mbe.2022350 doi: 10.3934/mbe.2022350 |
[23] | Q. Griette, J. Demongeot, P. Magal, What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?, Math. Biosci. Eng., 19 (2022), 537–594. https://doi.org/10.3934/mbe.2022025 doi: 10.3934/mbe.2022025 |
[24] | L. Han, M. He, X. He, Q. Pan, Synergistic effects of vaccination and virus testing on the transmission of an infectious disease, Math. Biosci. Eng., 20 (2023), 16114–16130. https://doi.org/10.3934/mbe.2023719 doi: 10.3934/mbe.2023719 |
[25] | A. Kumar, Y. Takeuchi, P. K. Srivastava, Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays, Math. Biosci. Eng., 20 (2023), 11000–11032. https://doi.org/10.3934/mbe.2023487 doi: 10.3934/mbe.2023487 |
[26] | C. Barril, A. Calsina, J. Ripoll, A practical approach to $R_0$ in continuous-time ecological models, Math. Methods Appl. Sci., 41 (2018), 8432–8445. https://doi.org/10.1002/mma.4673 doi: 10.1002/mma.4673 |
[27] | O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, 2013. |
[28] | G. S. Tomba, Å. Svensson, T. Asikainen, J. Giesecke, Some model based considerations on observing generation times for communicable diseases, Math. Biosci., 223 (2010), 24–31. https://doi.org/10.1016/j.mbs.2009.10.004 doi: 10.1016/j.mbs.2009.10.004 |
[29] | D. Champredon, J. Dushoff, Intrinsic and realized generation intervals in infectious-disease transmission, Proc. Biol. Sci., 282 (2015), 20152026. https://doi.org/10.1098/rspb.2015.2026 doi: 10.1098/rspb.2015.2026 |
[30] | S. W. Park, D. Champredon, J. S. Weitz, J. Dushoff, A practical generation-interval-based approach to inferring the strength of epidemics from their speed, Epidemics, 27 (2019), 12–18. https://doi.org/10.1016/j.epidem.2018.12.002 doi: 10.1016/j.epidem.2018.12.002 |
[31] | D. Breda, F. Florian, J. Ripoll, R. Vermiglio, Efficient numerical computation of the basic reproduction number for structured populations, J. Comput. Appl. Math., 384 (2021), 113165. https://doi.org/10.1016/j.cam.2020.113165 doi: 10.1016/j.cam.2020.113165 |
[32] | M. Cevik, M. Tate, O. Lloyd, A. E. Maraolo, J. Schafers, A. Ho, SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis, Lancet Microbe, 2 (2021), E13–E22. |
[33] | O. Puhach, B. Meyer, I. Eckerle, SARS-CoV-2 viral load and shedding kinetics, Nat. Rev. Microbiol., 21 (2023), 147–161. https://doi.org/10.1038/s41579-022-00822-w doi: 10.1038/s41579-022-00822-w |
[34] | S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, et al., Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea, JAMA Intern. Med., 180 (2020), 1447–1452. https://doi.org/10.1001/jamainternmed.2020.3862 doi: 10.1001/jamainternmed.2020.3862 |
[35] | O. Byambasuren, M. Cardona, K. Bell, J. Clark, M. L. McLaws, P. Glasziou, Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis, J. Assoc. Med. Microbiol. Infect. Dis. Can., 5 (2020), 223–234. https://doi.org/10.3138/jammi-2020-0030 doi: 10.3138/jammi-2020-0030 |
[36] | W. C. Koh, L. Naing, L. Chaw, M. A. Rosledzana, M. F. Alikhan, S. A. Jamaludin, et al., What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors, PLoS One, 15 (2020), e0240205. https://doi.org/10.1371/journal.pone.0240205 doi: 10.1371/journal.pone.0240205 |
[37] | Z. Madewell, Y. Yang, I. Longini Jr, M. E. Halloran, N. Dean, Household transmission of SARS-CoV-2: A systematic review and meta-analysis, JAMA Network Open, 3 (2020), e2031756. https://doi.org/10.1001/jamanetworkopen.2020.31756 doi: 10.1001/jamanetworkopen.2020.31756 |
[38] | M. Kimmel, D. Axelrod, Branching Processes in Biology, Springer-Verlag, 2002. |
[39] | S. Karlin, The existence of eigenvalues for integral operators, Trans. Am. Math. Soc., 113 (1964), 1–17. https://doi.org/10.1090/S0002-9947-1964-0169090-0 doi: 10.1090/S0002-9947-1964-0169090-0 |
[40] | K. Yosida, S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Ann. Math., 42 (1941), 188–228. https://doi.org/10.2307/1968993 doi: 10.2307/1968993 |
[41] | S. Karlin, Positive operators, J. Math. Mech., 8 (1959), 907–937. https://doi.org/10.1512/iumj.1959.8.58058 |