Research article

An individual-level probabilistic model and solution for control of infectious diseases


  • Received: 18 July 2024 Revised: 16 September 2024 Accepted: 19 September 2024 Published: 09 October 2024
  • We present an individual-level probabilistic model to evaluate the effectiveness of two traditional control measures for infectious diseases: the isolation of symptomatic individuals and contact tracing (plus subsequent quarantine). The model allows us to calculate the reproduction number and the generation-time distribution under the two control measures. The model is related to the work of Fraser et al. on the same topic [1], which provides a population-level model using a combination of differential equations and probabilistic arguments. We show that our individual-level model has certain advantages. In particular, we are able to provide more precise results for a disease that has two classes of infected individuals – the individuals who will remain asymptomatic throughout and the individuals who will eventually become symptomatic. Using the properties of integral operators with positive kernels, we also resolve the important theoretical issue as to why the density function of the steady-state generation time is the eigenfunction associated with the largest eigenvalue of the underlying integral operator. Moreover, the same theoretical result shows why the simple algorithm of repeated integration can find numerical solutions for virtually all initial conditions. We discuss the model's implications, especially how it enhances our understanding about the impact of asymptomatic individuals. For instance, in the special case where the infectiousness of the two classes is proportional to each other, the effects of the asymptomatic individuals can be understood by supposing that all individuals will be symptomatic but with modified infectiousness and modified efficacy of the isolation measure. The numerical results show that, out of the two measures, isolation is the more decisive one, at least for the COVID-19 parameters used in the numerical experiments.

    Citation: Ye Xia. An individual-level probabilistic model and solution for control of infectious diseases[J]. Mathematical Biosciences and Engineering, 2024, 21(10): 7253-7277. doi: 10.3934/mbe.2024320

    Related Papers:

  • We present an individual-level probabilistic model to evaluate the effectiveness of two traditional control measures for infectious diseases: the isolation of symptomatic individuals and contact tracing (plus subsequent quarantine). The model allows us to calculate the reproduction number and the generation-time distribution under the two control measures. The model is related to the work of Fraser et al. on the same topic [1], which provides a population-level model using a combination of differential equations and probabilistic arguments. We show that our individual-level model has certain advantages. In particular, we are able to provide more precise results for a disease that has two classes of infected individuals – the individuals who will remain asymptomatic throughout and the individuals who will eventually become symptomatic. Using the properties of integral operators with positive kernels, we also resolve the important theoretical issue as to why the density function of the steady-state generation time is the eigenfunction associated with the largest eigenvalue of the underlying integral operator. Moreover, the same theoretical result shows why the simple algorithm of repeated integration can find numerical solutions for virtually all initial conditions. We discuss the model's implications, especially how it enhances our understanding about the impact of asymptomatic individuals. For instance, in the special case where the infectiousness of the two classes is proportional to each other, the effects of the asymptomatic individuals can be understood by supposing that all individuals will be symptomatic but with modified infectiousness and modified efficacy of the isolation measure. The numerical results show that, out of the two measures, isolation is the more decisive one, at least for the COVID-19 parameters used in the numerical experiments.



    加载中


    [1] C. Fraser, S. Riley, R. M. Anderson, N. M. Ferguson, Factors that make an infectious disease outbreak controllable, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 6146–6151. https://doi.org/10.1073/pnas.0307506101 doi: 10.1073/pnas.0307506101
    [2] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, et al., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368 (2020), eabb6936. https://doi.org/10.1126/science.abb6936 doi: 10.1126/science.abb6936
    [3] J. D. Murray, Mathematical Biology, 3rd edition, Springer-Verlag, 2002.
    [4] C. Barril, À. Calsina, S. Cuadrado, J. Ripoll, Reproduction number for an age of infection structured model, Math. Model. Nat. Phenom., 16 (2021), 42. https://doi.org/10.1051/mmnp/2021033 doi: 10.1051/mmnp/2021033
    [5] G. Aldis, M. Roberts, An integral equation model for the control of a smallpox outbreak, Math. Biosci., 195 (2005), 1–22. https://doi.org/10.1016/j.mbs.2005.01.006 doi: 10.1016/j.mbs.2005.01.006
    [6] D. Klinkenberg, C. Fraser, H. Heesterbeek, The effectiveness of contact tracing in emerging epidemics, PLoS One, 1 (2006), 1–7. https://doi.org/10.1371/journal.pone.0000012 doi: 10.1371/journal.pone.0000012
    [7] J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Global Health, 8 (2020), e488–e496. https://doi.org/10.1016/S2214-109X(20)30074-7 doi: 10.1016/S2214-109X(20)30074-7
    [8] C. M. Peak, L. M. Childs, Y. H. Grad, C. O. Buckee, Comparing nonpharmaceutical interventions for containing emerging epidemics, Proc. Natl. Acad. Sci. U.S.A., 114 (2017), 4023–4028. https://doi.org/10.1073/pnas.1616438114 doi: 10.1073/pnas.1616438114
    [9] J. Müller, M. Kretzschmar, K. Dietz, Contact tracing in stochastic and deterministic epidemic models, Math. Biosci., 164 (2000), 39–64. https://doi.org/10.1016/S0025-5564(99)00061-9 doi: 10.1016/S0025-5564(99)00061-9
    [10] J. Müller, V. Hösel, Contact tracing & super-spreaders in the branching-process model, J. Math. Biol., 86 (2023), 24. https://doi.org/10.1007/s00285-022-01857-6 doi: 10.1007/s00285-022-01857-6
    [11] P. Jagers, Branching Processes with Biological Applications, John Wiley & Sons, 1975.
    [12] M. E. Kretzschmar, G. Rozhnova, M. C. J. Bootsma, M. van Boven, J. H. H. M. van de Wijgert, M. J. M. Bonten, Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study, Lancet Public Health, 5 (2020), e452–e459. https://doi.org/10.1016/S2468-2667(20)30157-2 doi: 10.1016/S2468-2667(20)30157-2
    [13] F. G. Ball, E. S. Knock, P. D. O'Neill, Threshold behavior of emerging epidemics featuring contact tracing, Adv. Appl. Probab., 43 (2011), 1048–1065. https://doi.org/10.1239/aap/1324045698 doi: 10.1239/aap/1324045698
    [14] J. Ripoll, J. Font, A discrete model for the evolution of infection prior to symptom onset, Mathematics, 11 (2023), 1092. https://doi.org/10.3390/math11051092 doi: 10.3390/math11051092
    [15] C. Browne, H. Gulbudak, G. Webb, Modeling contact tracing in outbreaks with application to Ebola, J. Theor. Biol., 384 (2015), 33–49. https://doi.org/10.1016/j.jtbi.2015.08.004 doi: 10.1016/j.jtbi.2015.08.004
    [16] A. Mubayi, C. K. Zaleta, M. Martcheva, C. Castillo-Chávez, A cost-based comparison of quarantine strategies for new emerging diseases, Math. Biosci. Eng., 7 (2010), 687–717. https://doi.org/10.3934/mbe.2010.7.687 doi: 10.3934/mbe.2010.7.687
    [17] S. S. Nadim, I. Ghosh, J. Chattopadhyay, Short-term predictions and prevention strategies for COVID-19: A model-based study, Appl. Math. Comput., 404 (2021), 126251. https://doi.org/10.1016/j.amc.2021.126251 doi: 10.1016/j.amc.2021.126251
    [18] D. Kumar Das, A. Khatua, T. Kar, S. Jana, The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India, Appl. Math. Comput., 404 (2021), 126207. https://doi.org/10.1016/j.amc.2021.126207 doi: 10.1016/j.amc.2021.126207
    [19] M. M. U. R. Khan, M. R. Arefin, J. Tanimoto, Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach, Appl. Math. Comput., 432 (2022), 127365. https://doi.org/10.1016/j.amc.2022.127365 doi: 10.1016/j.amc.2022.127365
    [20] R. K. Rai, A. K. Misra, Y. Takeuchi, Modeling the impact of sanitation and awareness on the spread of infectious diseases, Math. Biosci. Eng., 16 (2019), 667–700. https://doi.org/10.3934/mbe.2019032 doi: 10.3934/mbe.2019032
    [21] F. Zhang, Z. Jin, Effect of travel restrictions, contact tracing and vaccination on control of emerging infectious diseases: transmission of COVID-19 as a case study, Math. Biosci. Eng., 19 (2022), 3177–3201. https://doi.org/10.3934/mbe.2022147 doi: 10.3934/mbe.2022147
    [22] T. Kobayashi, H. Nishiura, Prioritizing COVID-19 vaccination. part 2: Real-time comparison between single-dose and double-dose in Japan, Math. Biosci. Eng., 19 (2022), 7410–7424. https://doi.org/10.3934/mbe.2022350 doi: 10.3934/mbe.2022350
    [23] Q. Griette, J. Demongeot, P. Magal, What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?, Math. Biosci. Eng., 19 (2022), 537–594. https://doi.org/10.3934/mbe.2022025 doi: 10.3934/mbe.2022025
    [24] L. Han, M. He, X. He, Q. Pan, Synergistic effects of vaccination and virus testing on the transmission of an infectious disease, Math. Biosci. Eng., 20 (2023), 16114–16130. https://doi.org/10.3934/mbe.2023719 doi: 10.3934/mbe.2023719
    [25] A. Kumar, Y. Takeuchi, P. K. Srivastava, Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays, Math. Biosci. Eng., 20 (2023), 11000–11032. https://doi.org/10.3934/mbe.2023487 doi: 10.3934/mbe.2023487
    [26] C. Barril, A. Calsina, J. Ripoll, A practical approach to $R_0$ in continuous-time ecological models, Math. Methods Appl. Sci., 41 (2018), 8432–8445. https://doi.org/10.1002/mma.4673 doi: 10.1002/mma.4673
    [27] O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, 2013.
    [28] G. S. Tomba, Å. Svensson, T. Asikainen, J. Giesecke, Some model based considerations on observing generation times for communicable diseases, Math. Biosci., 223 (2010), 24–31. https://doi.org/10.1016/j.mbs.2009.10.004 doi: 10.1016/j.mbs.2009.10.004
    [29] D. Champredon, J. Dushoff, Intrinsic and realized generation intervals in infectious-disease transmission, Proc. Biol. Sci., 282 (2015), 20152026. https://doi.org/10.1098/rspb.2015.2026 doi: 10.1098/rspb.2015.2026
    [30] S. W. Park, D. Champredon, J. S. Weitz, J. Dushoff, A practical generation-interval-based approach to inferring the strength of epidemics from their speed, Epidemics, 27 (2019), 12–18. https://doi.org/10.1016/j.epidem.2018.12.002 doi: 10.1016/j.epidem.2018.12.002
    [31] D. Breda, F. Florian, J. Ripoll, R. Vermiglio, Efficient numerical computation of the basic reproduction number for structured populations, J. Comput. Appl. Math., 384 (2021), 113165. https://doi.org/10.1016/j.cam.2020.113165 doi: 10.1016/j.cam.2020.113165
    [32] M. Cevik, M. Tate, O. Lloyd, A. E. Maraolo, J. Schafers, A. Ho, SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis, Lancet Microbe, 2 (2021), E13–E22.
    [33] O. Puhach, B. Meyer, I. Eckerle, SARS-CoV-2 viral load and shedding kinetics, Nat. Rev. Microbiol., 21 (2023), 147–161. https://doi.org/10.1038/s41579-022-00822-w doi: 10.1038/s41579-022-00822-w
    [34] S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, et al., Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea, JAMA Intern. Med., 180 (2020), 1447–1452. https://doi.org/10.1001/jamainternmed.2020.3862 doi: 10.1001/jamainternmed.2020.3862
    [35] O. Byambasuren, M. Cardona, K. Bell, J. Clark, M. L. McLaws, P. Glasziou, Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis, J. Assoc. Med. Microbiol. Infect. Dis. Can., 5 (2020), 223–234. https://doi.org/10.3138/jammi-2020-0030 doi: 10.3138/jammi-2020-0030
    [36] W. C. Koh, L. Naing, L. Chaw, M. A. Rosledzana, M. F. Alikhan, S. A. Jamaludin, et al., What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors, PLoS One, 15 (2020), e0240205. https://doi.org/10.1371/journal.pone.0240205 doi: 10.1371/journal.pone.0240205
    [37] Z. Madewell, Y. Yang, I. Longini Jr, M. E. Halloran, N. Dean, Household transmission of SARS-CoV-2: A systematic review and meta-analysis, JAMA Network Open, 3 (2020), e2031756. https://doi.org/10.1001/jamanetworkopen.2020.31756 doi: 10.1001/jamanetworkopen.2020.31756
    [38] M. Kimmel, D. Axelrod, Branching Processes in Biology, Springer-Verlag, 2002.
    [39] S. Karlin, The existence of eigenvalues for integral operators, Trans. Am. Math. Soc., 113 (1964), 1–17. https://doi.org/10.1090/S0002-9947-1964-0169090-0 doi: 10.1090/S0002-9947-1964-0169090-0
    [40] K. Yosida, S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Ann. Math., 42 (1941), 188–228. https://doi.org/10.2307/1968993 doi: 10.2307/1968993
    [41] S. Karlin, Positive operators, J. Math. Mech., 8 (1959), 907–937. https://doi.org/10.1512/iumj.1959.8.58058
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(461) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog