Research article Special Issues

An SIS epidemic model with individual variation

  • Received: 25 January 2024 Revised: 28 February 2024 Accepted: 02 March 2024 Published: 14 March 2024
  • We study an extension of the stochastic SIS (Susceptible-Infectious-Susceptible) model in continuous time that accounts for variation amongst individuals. By examining its limiting behaviour as the population size grows we are able to exhibit conditions for the infection to become endemic.

    Citation: Philip K. Pollett. An SIS epidemic model with individual variation[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5446-5455. doi: 10.3934/mbe.2024240

    Related Papers:

  • We study an extension of the stochastic SIS (Susceptible-Infectious-Susceptible) model in continuous time that accounts for variation amongst individuals. By examining its limiting behaviour as the population size grows we are able to exhibit conditions for the infection to become endemic.



    加载中


    [1] G.H. Weiss, M. Dishon, On the asymptotic behaviour of the stochastic and deterministic models of an epidemic, Math. Biosci., 11 (1971), 261–265. https://doi.org/10.1016/0025-5564(71)90087-3 doi: 10.1016/0025-5564(71)90087-3
    [2] T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probab., 7 (1970), 49–58. https://doi.org/10.2307/3212147 doi: 10.2307/3212147
    [3] F. Ball, Stochastic and deterministic models for SIS epidemics among a population partitioned into households, Math. Biosci., 158 (1999), 41–67. https://doi.org/10.1016/S0025-5564(98)10060-3 doi: 10.1016/S0025-5564(98)10060-3
    [4] F. G. Ball, O. D. Lyne, Optimal vaccination policies for stochastic epidemics among a population of households, Math. Biosci., 177–178 (2002), 333–354. https://doi.org/10.1016/S0025-5564(01)00095-5 doi: 10.1016/S0025-5564(01)00095-5
    [5] T. Britton, P. Neal, The time to extinction for an SIS-household-epidemic model, J. Math. Biol., 61 (2010), 763–779. https://doi.org/10.1007/s00285-009-0320-5 doi: 10.1007/s00285-009-0320-5
    [6] D. Clancy, P. O'Neill, Exact bayesian inference and model selection for stochastic models of epidemics among a community of households, Scand. J. Statist., 34 (2007), 259–274. https://doi.org/10.1111/j.1467-9469.2006.00522.x doi: 10.1111/j.1467-9469.2006.00522.x
    [7] D. Hiebler, Moment equations and dynamics of a household SIS epidemiological model, J. Math. Biol., 68 (2006), 1315–1333. https://doi.org/10.1007/s11538-006-9080-1 doi: 10.1007/s11538-006-9080-1
    [8] P. Neal, Efficient likelihood-free bayesian computation for household epidemics, Stat. Comput., 22 (2012), 1239–1256. https://doi.org/10.1007/s11222-010-9216-x doi: 10.1007/s11222-010-9216-x
    [9] V. Cane, R. McNamee, The spread of infection in a heterogeneous population, J. Appl. Probab., 19A (1982), 173–184. https://doi.org/10.1017/S0021900200034549 doi: 10.1017/S0021900200034549
    [10] R. McVinish, P. K. Pollett, The deterministic limit of a stochastic logistic model with individual variation, Math. Biosci., 241 (2013), 109–114. https://doi.org/10.1016/j.mbs.2012.10.001 doi: 10.1016/j.mbs.2012.10.001
    [11] S. Nadarajaha, A. K. Gupta, Some bivariate gamma distributions. Appl. Math. Letters, 19 (2006), 767–774. https://doi.org/10.1016/j.aml.2005.10.007
    [12] L. Hodgkinson, Approximations for finite spin systems and occupancy processes. PhD thesis, School of Mathematics and Physics, The University of Queensland, 2019.
    [13] L. Hodgkinson, R. McVinish, P. K. Pollett. Normal approximations for discrete-time occupancy processes, Stochastic Process. Appl., 130 (2020), 6414–6444. https://doi.org/10.1016/j.spa.2020.05.016 doi: 10.1016/j.spa.2020.05.016
    [14] P. Stone, H. Wilkinson-Herbots, V. Isham, A stochastic model for head lice infections, J. Math. Biol., 56 (2008), 743–763. https://doi.org/10.1007/s00285-007-0136-0 doi: 10.1007/s00285-007-0136-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(868) PDF downloads(129) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog