Research article Special Issues

Advancing glioma diagnosis: Integrating custom U-Net and VGG-16 for improved grading in MR imaging

  • Received: 09 January 2024 Revised: 06 February 2024 Accepted: 13 February 2024 Published: 26 February 2024
  • In the realm of medical imaging, the precise segmentation and classification of gliomas represent fundamental challenges with profound clinical implications. Leveraging the BraTS 2018 dataset as a standard benchmark, this study delves into the potential of advanced deep learning models for addressing these challenges. We propose a novel approach that integrates a customized U-Net for segmentation and VGG-16 for classification. The U-Net, with its tailored encoder-decoder pathways, accurately identifies glioma regions, thus improving tumor localization. The fine-tuned VGG-16, featuring a customized output layer, precisely differentiates between low-grade and high-grade gliomas. To ensure consistency in data pre-processing, a standardized methodology involving gamma correction, data augmentation, and normalization is introduced. This novel integration surpasses existing methods, offering significantly improved glioma diagnosis, validated by high segmentation dice scores (WT: 0.96, TC: 0.92, ET: 0.89), and a remarkable overall classification accuracy of 97.89%. The experimental findings underscore the potential of integrating deep learning-based methodologies for tumor segmentation and classification in enhancing glioma diagnosis and formulating subsequent treatment strategies.

    Citation: Sonam Saluja, Munesh Chandra Trivedi, Shiv S. Sarangdevot. Advancing glioma diagnosis: Integrating custom U-Net and VGG-16 for improved grading in MR imaging[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4328-4350. doi: 10.3934/mbe.2024191

    Related Papers:

  • In the realm of medical imaging, the precise segmentation and classification of gliomas represent fundamental challenges with profound clinical implications. Leveraging the BraTS 2018 dataset as a standard benchmark, this study delves into the potential of advanced deep learning models for addressing these challenges. We propose a novel approach that integrates a customized U-Net for segmentation and VGG-16 for classification. The U-Net, with its tailored encoder-decoder pathways, accurately identifies glioma regions, thus improving tumor localization. The fine-tuned VGG-16, featuring a customized output layer, precisely differentiates between low-grade and high-grade gliomas. To ensure consistency in data pre-processing, a standardized methodology involving gamma correction, data augmentation, and normalization is introduced. This novel integration surpasses existing methods, offering significantly improved glioma diagnosis, validated by high segmentation dice scores (WT: 0.96, TC: 0.92, ET: 0.89), and a remarkable overall classification accuracy of 97.89%. The experimental findings underscore the potential of integrating deep learning-based methodologies for tumor segmentation and classification in enhancing glioma diagnosis and formulating subsequent treatment strategies.



    加载中


    [1] M. L. Goodenberger, R. B. Jenkins, Genetics of adult glioma, Cancer Genet., 205 (2012), 613–621. https://doi.org/10.1016/j.cancergen.2012.10.009 doi: 10.1016/j.cancergen.2012.10.009
    [2] D. N. Louis, A. Perry, G. Reifenberger, A. Deimling, D. Figarella-Branger, W. K. Cavenee, et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary, Acta Neuropathol., 131 (2016), 803–820. https://doi.org/10.1007/s00401-016-1545-1 doi: 10.1007/s00401-016-1545-1
    [3] D. N. Louis, A. Perry, P. Wesseling, D. J. Brat, I. A. Cree, D. Figarella-Branger, et al., The 2021 WHO Classification of Tumors of the Central Nervous System: A summary, Neuro-Oncol., 23 (2021), 1231–1251.https://doi.org/10.1093/neuonc/noab106 doi: 10.1093/neuonc/noab106
    [4] J. S. Barnholtz-Sloan, Q. T. Ostrom, D. Cote, Epidemiology of brain tumors, Neurol. Clin., 36 (2018), 395–419. https://doi.org/10.1016/j.ncl.2018.04.001 doi: 10.1016/j.ncl.2018.04.001
    [5] M. Decuyper, R.V. Holen, Fully automatic binary glioma grading based on Pre-therapy MRI using 3D Convolutional Neural Networks, preprint, arXiv: 1908.01506
    [6] A. Patra, A. Janu, A. Sahu, MR Imaging in neurocritical care, Indian J. Crit. Care Med., 23 (2019), 104–114. https://doi.org/10.5005/jp-journals-10071-23186 doi: 10.5005/jp-journals-10071-23186
    [7] Ö. Polat, C. Güngen, Classification of brain tumors from MR images using deep transfer learning, J. Supercomput., 77 (2021), 7236–7252.https://doi.org/10.1007/s11227-020-03572-9 doi: 10.1007/s11227-020-03572-9
    [8] S. Gore, T. Chougule, J. Jagtap, J. Saini, M. Ingalhalikar, et al., A review of radiomics and deep predictive modeling in glioma characterization, Acad. Radiol., 28 (2021), 1599–1621. https://doi.org/10.1016/j.acra.2020.06.016 doi: 10.1016/j.acra.2020.06.016
    [9] H. Jiang, Z. Diao, Y. Yao, DL techniques for tumor segmentation: A review, J. Supercomput., 78 (2022), 1807–1851. https://doi.org/10.1007/s11227-021-03901-6 doi: 10.1007/s11227-021-03901-6
    [10] S. Waite, J.Scott, B. Gale, T. Fuchs, S. Kolla, D. Reede, Interpretive error in radiology, Am. J. Roentgenol., 208 (2017), 739–749. https://doi.org/10.2214/ajr.16.16963 doi: 10.2214/ajr.16.16963
    [11] R. Ranjbarzadeh, A. B. Kasgari, S. J. Ghoushchi, S. Anari, M. Naseri, M. Bendechache, Brain tumor segmentation based on DL and an attention mechanism using MRI multi-modalities brain images, Sci. Rep., 11 (2021), 10930. https://doi.org/10.1038/s41598-021-90428-8 doi: 10.1038/s41598-021-90428-8
    [12] M.-A. Schulz, B. T. Thomas Yeo, J. T. Vogelstein, J. Mourao-Miranada, J. N. Kather, K. Kording, Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets, Nat. Commun., 11 (2020). https://doi.org/10.1038/s41467-020-18037-z doi: 10.1038/s41467-020-18037-z
    [13] K. Yasaka, H. Akai, A. Kunimatsu, S. Kiryu, O. Abe, Deep learning with convolutional neural network in radiology, Jpn. J. Radiol., 36 (2018), 257–272. https://doi.org/10.1007/s11604-018-0726-3 doi: 10.1007/s11604-018-0726-3
    [14] S. Fathi, M. Ahmadi, A. Dehnad, Early diagnosis of Alzheimer, Comput. Biol. Med., 146 (2022), 105634. https://doi.org/10.1016/j.compbiomed.2022.105634 doi: 10.1016/j.compbiomed.2022.105634
    [15] H. Özcan, B. G. Emiroglu, H. Sabuncuoğlu, S. Özdoğan, A. Soyer, T. Saygı, A comparative study for glioma classification using deep convolutional neural networks, Math. Biosci. Eng., 18 (2021), 1550–1572. https://doi.org/10.3934/mbe.2021080 doi: 10.3934/mbe.2021080
    [16] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84–90. https://doi.org/10.1145/3065386 doi: 10.1145/3065386
    [17] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, (2014), preprint, arXiv: 1409.1556.
    [18] H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, Automatic brain tumor detection and segmentation using U-Net based fully Convolutional Networks, preprint, arXiv: 1705.03820
    [19] S. Khawaldeh, U. Pervaiz, A. Rafiq, R. S. Alkhwaldeh, Noninvasive grading of glioma tumor using magnetic resonance imaging with Convolutional Neural Networks, Appl. Sci., 8 (2017), 27. https://doi.org/10.3390/app8010027 doi: 10.3390/app8010027
    [20] A. K. Anaraki, M. Ayati, F. Kazemi, Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms, Biocybern. Biomed. Eng., 39 (2019), 63–74. https://doi.org/10.1016/j.bbe.2018.10.004 doi: 10.1016/j.bbe.2018.10.004
    [21] H. Mzoughi, I. Njeh, A. Wali, M. B. Slima, A. B. Hamida, C. Mhiri, et al., Deep multi-scale 3D Convolutional Neural Network (CNN) for MRI Gliomas brain tumor classification, J. Digit. Imaging, 33 (2020), 903–915. https://doi.org/10.1007/s10278-020-00347-9 doi: 10.1007/s10278-020-00347-9
    [22] Y. Zhuge, H. Ning, P. Mathen, J. Y. Cheng, A. V. Krauze, K. Camphausen, et al., Automated glioma grading on conventional MRI images using deep convolutional neural networks, Med. Phys., 47 (2020), 3044–3053. https://doi.org/10.1002/mp.14168 doi: 10.1002/mp.14168
    [23] S. Gutta, J. Acharya, M. S. Shiroishi, D. Hwang, K. S. Nayak, Improved Glioma grading using Deep Convolutional Neural Networks, AJNR Am. J. Neuroradiol., 42 (2020), 233–239. https://doi.org/10.3174/ajnr.a6882 doi: 10.3174/ajnr.a6882
    [24] Z. Lu, Y. Bai, Y. Chen, C. Su, S. Lu, T. Zhan, et al., The classification of gliomas based on a Pyramid dilated convolution resnet model, Pattern Recognit. Lett., 133 (2020), 173–179.https://doi.org/10.1016/j.patrec.2020.03.007 doi: 10.1016/j.patrec.2020.03.007
    [25] M. A. Naser, M. J. Deen, Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images, Comput. Biol. Med., 121 (2020), 103758. https://doi.org/10.1016/j.compbiomed.2020.103758 doi: 10.1016/j.compbiomed.2020.103758
    [26] M. Decuyper, S. Bonte, K. Deblaere, R. Van Holen, Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma, Comput. Med. Imaging Graph., 88 (2021), 101831. https://doi.org/10.1016/j.compmedimag.2020.101831 doi: 10.1016/j.compmedimag.2020.101831
    [27] G. S. Tandel, A. Tiwari, O. Kakde, Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification, Comput. Biol. Med., 135 (2021), 104564. https://doi.org/10.1016/j.compbiomed.2021.104564 doi: 10.1016/j.compbiomed.2021.104564
    [28] G. S. Tandel, A. Tiwari, O. G. Kakde, Performance enhancement of MRI based brain tumor classification using suitable segmentation method and deep learning-based ensemble algorithm, Biomed. Signal Process. Control., 78 (2022). https://doi.org/10.1016/j.bspc.2022.104018 doi: 10.1016/j.bspc.2022.104018
    [29] S. E. Nassar, I. Yasser, H. M. Amer, M. A. Mohamed, A robust MRI-based brain tumor classification via a hybrid deep learning technique, J. Supercomput., 80 (2023). https://doi.org/10.1007/s11227-023-05549-w doi: 10.1007/s11227-023-05549-w
    [30] T.-Y. Hsiao, Y.-C. Chang, C.-T. Chiu, Filter-based deep-compression with global average pooling for Convolutional Networks, in IEEE International Workshop on Signal Processing Systems (SiPS), (2018). https://doi.org/10.1109/sips.2018.8598453
    [31] T. G. Dietterich, Ensemble methods in machine learning, in multiple classifier systems, MCS 2000. Lecture Notes Computer Sci., 1857 (2020). https://doi.org/10.1007/3-540-45014-9_1 doi: 10.1007/3-540-45014-9_1
    [32] B. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al., The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 34 (2015), 1993–2024. https://doi.org/10.1109/TMI.2014.2377694 doi: 10.1109/TMI.2014.2377694
    [33] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, (2018), preprint, arXiv: 1811.02629.
    [34] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, et al., Advancing the Cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features, Sci. Data, 4 (2017). https://doi.org/10.1038/sdata.2017.117 doi: 10.1038/sdata.2017.117
    [35] A. Man, S. Anand, Method of multi-region tumour segmentation in brain MRI images using grid-based segmentation and weighted bee swarm optimisation, IET Image Process., 14 (2020), 2901–2910. https://doi.org/10.1049/iet-ipr.2019.1234 doi: 10.1049/iet-ipr.2019.1234
    [36] K. Maharana, S. Mondal B. Nemade, A review: Data pre-processing and data augmentation techniques, Glob. Transit., 3 (2022), 91–99. https://doi.org/10.1016/j.gltp.2022.04.020 doi: 10.1016/j.gltp.2022.04.020
    [37] H. Moradmand, S. M. R. Aghamiri, R. Ghaderi, Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma, J. Appl. Clin. Med. Phys., 21 (2019), 179–190. https://doi.org/10.1002/acm2.12795 doi: 10.1002/acm2.12795
    [38] O. Ronneberger, Invited Talk: U-Net Convolutional Networks for Biomedical Image Segmentation, in Bildverarbeitung für die Medizin 2017, Informatik aktuell, (2017), 3. https://doi.org/10.1007/978-3-662-54345-0_3
    [39] S. Das, M. K. Swain, G. K. Nayak, S. Saxena, S. C. Satpathy, Effect of learning parameters on the performance of U-Net Model in segmentation of Brain tumor, Multimed. Tools Appl., 81 (2021), 34717–34735. https://doi.org/10.1007/s11042-021-11273-5 doi: 10.1007/s11042-021-11273-5
    [40] A. Rusiecki, Trimmed categorical cross-entropy for deep learning with label noise, Electron. Lett., 55 (2019), 319–320. https://doi.org/10.1049/el.2018.7980 doi: 10.1049/el.2018.7980
    [41] H. Seo, M. Bassenne, L. Xing, Closing the gap between deep neural network modeling and biomedical decision-making metrics in segmentation via adaptive loss functions, IEEE Trans. Med. Imaging, 40 (2021), 585–593. https://doi.org/10.1109/tmi.2020.3031913 doi: 10.1109/tmi.2020.3031913
    [42] A. Taha, A. Hanbury, Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool, BMC Med. Imag., 15 (2015). https://doi.org/10.1186/s12880-015-0068-x doi: 10.1186/s12880-015-0068-x
    [43] A. Tharwat, Classification assessment methods, Appl. Comput. Inform., 17 (2020), 168–192. https://doi.org/10.1016/j.aci.2018.08.003 doi: 10.1016/j.aci.2018.08.003
    [44] C. Huan, M. Wan, Automated segmentation of brain tumor based on improved U-Net with residual units, Multimed. Tools Appl., 81 (2022), 12543–12566. https://doi.org/10.1007/s11042-022-12335-y doi: 10.1007/s11042-022-12335-y
    [45] M. Noori, A. Bahri, K. Mohammadi, Attention-guided version of 2D UNet for automatic brain tumor segmentation, in 9th International Conference on Computer and Knowledge Engineering (ICCKE), (2019). https://doi.org/10.1109/iccke48569.2019.8964956
    [46] F. Isensee, P. F. Jager, P. M. Full, P. Vollmuth, K. H. Maier-Hein, NnU-Net for brain tumor segmentation, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2020, Lecture Notes in Computer Science, 12659. https://doi.org/10.1007/978-3-030-72087-2_11
    [47] W. Ayadi, W. Elhamzi, M. Atri, A deep conventional neural network model for glioma tumor segmentation, Int. J. Imaging Syst., 33 (2023), 1593–1605. https://doi.org/10.1002/ima.22892 doi: 10.1002/ima.22892
    [48] Y. Zhang, Y. Han, J. Zhang, MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation, Math Biosci. Eng., 20 (2023), 20510–20527. https://10.3934/mbe.2023907
    [49] M. U. Rehman, S. Cho, J. H. Kim, K. T. Chong, BU-Net: Brain tumor segmentation using modified U-Net architecture, Electronics, 9 (2020), 2203. https://doi.org/10.3390/electronics9122203 doi: 10.3390/electronics9122203
    [50] M. U. Rehman, J. Ryu, I. F. Nizami, K. T. Chong, RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames, Comput. Biol. Med., 152 (2023), 106426. https://doi.org/10.1016/j.compbiomed.2022.106426 doi: 10.1016/j.compbiomed.2022.106426
    [51] J. Linqi, N. Chunyu, L. Jingyang, Glioma classification framework based on SE-ResNeXt network and its optimization, IET Image Process., 16 (2021), 596–605. https://doi.org/10.1049/ipr2.12374 doi: 10.1049/ipr2.12374
    [52] Y. Yang, L-F. Yan, X. Zhang, Y. Han, H-Y. Nan, Y-C. Hu, et al., Glioma grading on Conventional MR Images: A deep learning study with transfer learning, Front. Neurosci., 12 (2018), 804. https://doi.org/10.3389/fnins.2018.00804 doi: 10.3389/fnins.2018.00804
    [53] S. V. Rubio, M. T. Garcia-Ordas, O. García-Olalla Olivera, H. Alaiz-Moretón, M. González-Alonso, J. A. Benítez-Andrades, Survival and grade of the glioma prediction using transfer learning, PeerJ Comput. Sci., 9 (2023). https://doi.org/10.7717/peerj-cs.1723 doi: 10.7717/peerj-cs.1723
    [54] H. E. Hamdaoui, A. Benfares, S. Boujraf, N. E. H. Chaoui, B. Alami, M. Maaroufi, et al., High precision brain tumor classification model based on deep transfer learning and stacking concepts, Indones. J. Electr., 24 (2021), 167–177. https://doi.org/10.11591/ijeecs.v24.i1.pp167-177 doi: 10.11591/ijeecs.v24.i1.pp167-177
    [55] Z. Khazaee, M. Langarizadeh, and M. E. Shiri Ahmadabadi, Developing an artificial intelligence model for tumor grading and classification, based on MRI sequences of human brain gliomas, Int. J. Cancer Manag., 15 (2022). https://doi.org/10.5812/ijcm.120638 doi: 10.5812/ijcm.120638
    [56] K. Dang, T. Vo, L. Ngo, H. Ha, A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification, IBRO Neurosci. Rep., 13 (2022), 523–532. https://doi.org/10.1016/j.ibneur.2022.10.014 doi: 10.1016/j.ibneur.2022.10.014
    [57] P. C. Tripathi, S. Bag, A computer-aided grading of glioma tumor using deep residual networks fusion, Comput. Methods Programs Biomed., 215 (2022), 106597. https://doi.org/10.1016/j.cmpb.2021.106597 doi: 10.1016/j.cmpb.2021.106597
    [58] A. B. Slama, H. Sahli, Y. Amri, H. Trabelsi, Res-Net-VGG19: Improved tumor segmentation using MR images based on Res-Net architecture and efficient VGG gliomas grading, Appl. Eng. Sci., 16 (2023), 100153. https://doi.org/10.1016/j.apples.2023.100153 doi: 10.1016/j.apples.2023.100153
    [59] J. Sivakumar, S. R. Kannan, K. S. Manic, Automated classification of brain tumors into LGG/HGG using concatenated deep and handcrafted features, in Frontiers of Artificial Intelligence in Medical Imaging, (2022). https://doi.org/10.1088/978-0-7503-4012-0ch7
    [60] M. M. Mahasin, A. Naba, C. S. Widodo, Y. Yueniwati, Development of a modified UNet-based image segmentation architecture for brain tumor MRI segmentation, in Proceedings of the International Conference of Medical and Life Science (ICoMELISA 2021), (2023), 37–43. https://doi.org/10.2991/978-94-6463-208-8_7
    [61] S. Ambesange, B. Annappa, S. G. Koolagudi, Simulating federated transfer learning for lung segmentation using modified UNet model, Procedia Comput. Sci., 218 (2023), 1485–1496. https://doi.org/10.1016/j.procs.2023.01.127 doi: 10.1016/j.procs.2023.01.127
    [62] J. Ryu, M. U. Rehman, I. F. Nizami, K. T. Chong, SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation, Comput. Biol. Med., 163 (2023), 107132. https://doi.org/10.1016/j.compbiomed.2023.107132 doi: 10.1016/j.compbiomed.2023.107132
    [63] T. Tiwari, M. Saraswat, A new modified-unet deep learning model for semantic segmentation, Multimed. Tools Appl., 82 (2023), 3605–3625. https://doi.org/10.1007/s11042-022-13230-2 doi: 10.1007/s11042-022-13230-2
    [64] A. K. Upadhyay, A. K. Bhandari, Semi-supervised modified-UNet for lung infection image segmentation, IEEE Trans. Radiat. Plasma Med. Sci., 7 (2023), 638–649. https://doi.org/10.1109/trpms.2023.3272209 doi: 10.1109/trpms.2023.3272209
    [65] R. Ranjbarzadeh, P. Zarbakhsh, A. Caputo, E. B. Tirkolaee, M. Bendechache, Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm, Comput. Biol. Med., 168 (2024), 107723. https://doi.org/10.1016/j.compbiomed.2023.107723 doi: 10.1016/j.compbiomed.2023.107723
    [66] R. Ranjbarzadeh, S. J. Ghoushchi, N. T. Sarshar, E. B. Tirkolaee, S. S. Ali, T. Kumar, et al., ME-CCNN: Multi-encoded images and a cascade convolutional neural network for breast tumor segmentation and recognition, Artif. Intell. Rev., 56 (2023), 10099–10136. https://doi.org/10.1007/s10462-023-10426-2 doi: 10.1007/s10462-023-10426-2
    [67] A, B. Kasgari, R. Ranjbarzadeh, A. Caputo, S. B. Saadi, M. Bendechache, Brain tumor segmentation based on zernike moments, enhanced ant lion optimization, and convolutional neural network in MRI images, metaheuristics and optimization, in Computer and Electrical Engineering, Lecture Notes in Electrical Engineering, 1077 (2023). Springer, Cham. https://doi.org/10.1007/978-3-031-42685-8_10
    [68] S. Anari, N. S. Tataei, N. Mahjoori, S. Dorosti, A. Rezaie, Review of deep learning approaches for Thyroid Cancer Diagnosis, Math. Probl. Eng., (2022), 1–8. https://doi.org/10.1155/2022/5052435 doi: 10.1155/2022/5052435
    [69] Z. Zhu, X. He, G. Qui, Y. Li, B. Cong, Y. Liu, Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI, Inf. Fusion, 91 (2023), 376–387. https://doi.org/10.1016/j.inffus.2022.10.022 doi: 10.1016/j.inffus.2022.10.022
    [70] Y. Li, Z. Wang, L. Yin, Z. Zhu, G. Qi, Y. Liu, X-Net: A dual encoding–decoding method in medical image segmentation, Vis. Comput., 39 (2021), 2223–2233. https://doi.org/10.1007/s00371-021-02328-7 doi: 10.1007/s00371-021-02328-7
    [71] X. He, G. Qi, Z. Zhu, Y. Li, B. Cong, L. Bai, Medical image segmentation method based on multi-feature interaction and fusion over cloud computing, Simul. Model Pract. Theory, 126 (2023), 102769. https://doi.org/10.1016/j.simpat.2023.102769 doi: 10.1016/j.simpat.2023.102769
    [72] Y. Xu, X. He, G. Xu, G. Qi, K. Yu, Li. Yin, et al., A medical image segmentation method based on multi-dimensional statistical features, Front. Neurosci., 16 (2022). https://doi.org/10.3389/fnins.2022.1009581 doi: 10.3389/fnins.2022.1009581
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1159) PDF downloads(75) Cited by(4)

Article outline

Figures and Tables

Figures(6)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog