Research article Special Issues

Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance


  • Received: 07 October 2023 Revised: 17 December 2023 Accepted: 05 January 2024 Published: 12 January 2024
  • The article investigates the issue of fixed-time control with adaptive output feedback for a twin-roll inclined casting system (TRICS) with disturbance. First, by using the mean value theorem, the nonaffine functions are decoupled to simplify the system. Second, radial basis function neural networks (RBFNNs) are introduced to approximate an unknown term, and a nonlinear neural state observer is created to handle the effects of unmeasured states. Then, the backstepping design framework is combined with prescribed performance and command filtering techniques to demonstrate that the scheme proposed in this article guarantees system performance within a fixed-time. The control design parameters determine the upper bound of settling time, regardless of the initial state of the system. Meanwhile, it ensures that all signals in the closed-loop system (CLS) remain bounded, and it can also maintain the tracking error within a predefined range within a fixed time. Finally, simulation results assert the effectiveness of the method.

    Citation: Dongxiang Gao, Yujun Zhang, Libing Wu, Sihan Liu. Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2282-2301. doi: 10.3934/mbe.2024100

    Related Papers:

  • The article investigates the issue of fixed-time control with adaptive output feedback for a twin-roll inclined casting system (TRICS) with disturbance. First, by using the mean value theorem, the nonaffine functions are decoupled to simplify the system. Second, radial basis function neural networks (RBFNNs) are introduced to approximate an unknown term, and a nonlinear neural state observer is created to handle the effects of unmeasured states. Then, the backstepping design framework is combined with prescribed performance and command filtering techniques to demonstrate that the scheme proposed in this article guarantees system performance within a fixed-time. The control design parameters determine the upper bound of settling time, regardless of the initial state of the system. Meanwhile, it ensures that all signals in the closed-loop system (CLS) remain bounded, and it can also maintain the tracking error within a predefined range within a fixed time. Finally, simulation results assert the effectiveness of the method.



    加载中


    [1] Z. Yu, Z. S. Lei, Q. S. Li, K. Deng, Z. M. Ren, Physical simulation of nozzle electromagnetic brake in twin-roll strip casting, Steel Res. Int., 79 (2008), 839–842. https://doi.org/10.1002/srin.200806208 doi: 10.1002/srin.200806208
    [2] S. Ge, M. Isac, R. I. L. Guthrie, Progress of strip casting technology for steel; historical developments, ISIJ Int., 52 (2012), 2109–2122. https://doi.org/10.2355/isijinternational.52.2109 doi: 10.2355/isijinternational.52.2109
    [3] M. Vidoni, M. Daamen, G. Hirt, Advances in the twin-roll strip casting of strip with profiled cross section, Key Eng. Mater., 554 (2013), 562–571. https://doi.org/10.4028/www.scientific.net/kem.554-557.562 doi: 10.4028/www.scientific.net/kem.554-557.562
    [4] T. Haga, Y. Kurahashi, Casting process at roll bite in strip cast using vertical-type high-speed twin-roll caster, Metals, 12 (2022), 1169. https://doi.org/10.3390/met12071169 doi: 10.3390/met12071169
    [5] Y. J. Zhang, L. B. Wu, H. Y. Zhao, X. D. Hu, W. Y. Zhang, D. Y. Ju, Robust adaptive fuzzy output tracking control for a class of twin-roll strip casting systems, Math. Probl. Eng., 2017 (2017). https://doi.org/10.1155/2017/6742630
    [6] D. X. Gao, Y. J. Zhang, L. B. Wu, S. H. Liu, Adaptive neural command filtered fault-tolerant control for a twin roll inclined casting system, Metalurgija, 62 (2023), 355–358.
    [7] D. X. Gao, Y. J. Zhang, L. B. Wu, S. H. Liu, Mathematical modeling and command filter adaptive fuzzy control based on twin-roll inclined strip casting process, J. Control Autom. Electr. Syst., 34 (2023), 1220–1230. https://doi.org/10.1007/s40313-023-01029-x doi: 10.1007/s40313-023-01029-x
    [8] L. Liu, Y. J. Liu, S. C. Tong, Z. W. Gao, Relative threshold-based event-triggered control for nonlinear constrained systems with application to aircraft wing rock motion, IEEE Trans. Ind. Inf., 18 (2021), 911–921. https://doi.org/10.1109/tii.2021.3080841 doi: 10.1109/tii.2021.3080841
    [9] Y. J. Liu, M. Z. Gong, S. C. Tong, C. L. P. Chen, D. J. Li, Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints, IEEE Trans. Fuzzy Syst., 26 (2018), 2607–2617. https://doi.org/10.1109/TFUZZ.2018.2798577 doi: 10.1109/TFUZZ.2018.2798577
    [10] Y. X. Li, G. H. Yang, Observer-based fuzzy adaptive event-triggered control codesign for a class of uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 26 (2017), 1589–1599. https://doi.org/10.1109/TFUZZ.2017.2735944 doi: 10.1109/TFUZZ.2017.2735944
    [11] Y. X. Li, S. C. Tong, G. H. Yang, Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system, IEEE Trans. Cybern., 50 (2019), 3104–3112. https://doi.org/10.1109/TCYB.2019.2894024 doi: 10.1109/TCYB.2019.2894024
    [12] L. Liu, Y. J. Cui, Y. J. Liu, S. C. Tong, Observer-based adaptive neural output feedback constraint controller design for switched systems under average dwell time, IEEE Trans. Cybern., 68 (2021), 3901–3912. https://doi.org/10.1109/TCSI.2021.3093326 doi: 10.1109/TCSI.2021.3093326
    [13] F. Shen, X. J. Wang, X. H. Yin, Adaptive neural output-feedback tracking control for a class of stochastic nonlinear systems with output constraint and unknown control coefficients, Int. J. Robust Nonlinear Control, 32 (2022), 1862–1878. https://doi.org/10.1002/rnc.5918 doi: 10.1002/rnc.5918
    [14] S. P. Bhat, D. S. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Autom. Control, 43 (1998), 678–682. https://doi.org/10.1109/9.668834 doi: 10.1109/9.668834
    [15] Y. X. Li, Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems, Automatica, 106 (2019), 117–123. https://doi.org/10.1016/j.automatica.2019.04.022 doi: 10.1016/j.automatica.2019.04.022
    [16] J. L. Sun, H. B. He, J. Q. Yi, Z. Q. Pu, Finite-time command-filtered composite adaptive neural control of uncertain nonlinear systems, IEEE Trans. Cybern., 52 (2020), 6809–6821. https://doi.org/10.1109/TCYB.2020.3032096 doi: 10.1109/TCYB.2020.3032096
    [17] C. Wang, C. Zhang, D. He, J. L. Xiao, L. Y. Liu, Observer-based finite-time adaptive fuzzy back-stepping control for mimo coupled nonlinear systems, Math. Biosci. Eng., 19 (2022), 10637–10655. https://doi.org/10.3934/mbe.2022497 doi: 10.3934/mbe.2022497
    [18] F. Wang, B. Chen, Y. M. Sun, Y. L. Gao, C. Lin, Finite-time fuzzy control of stochastic nonlinear systems, IEEE Trans. Cybern., 50 (2019), 2617–2626. https://doi.org/10.1109/TCYB.2019.2925573 doi: 10.1109/TCYB.2019.2925573
    [19] P. H. Du, H. J. Liang, S. Y. Zhao, C. K. Ahn, Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints, IEEE Trans. Syst. Man Cybern. Syst., 51 (2019), 3136–3147. https://doi.org/10.1109/TSMC.2019.2918351 doi: 10.1109/TSMC.2019.2918351
    [20] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
    [21] M. Chen, H. Q. Wang, X. P. Liu, Adaptive fixed-time stabilization for a class of nonlinear uncertain systems, IEEE Trans. Fuzzy Syst., 29 (2019), 664–673. https://doi.org/10.1109/TFUZZ.2019.2959972 doi: 10.1109/TFUZZ.2019.2959972
    [22] Y. Zhao, J. L. Yao, J. Tian, J. B. Yu, Adaptive fixed-time stabilization for a class of nonlinear uncertain systems, Math. Biosci. Eng., 20 (2023), 8241–8260. https://doi.org/10.3934/mbe.2023359 doi: 10.3934/mbe.2023359
    [23] L. L. Zhang, L. C. Zhu, C. C. Hua, C. Qian, Fixed-time observer-based output feedback control for nonlinear systems with full-state constraints, IEEE Trans. Circuits Syst. II Express Briefs, 2022 (2022). https://doi.org/10.1109/TCSII.2022.3224957
    [24] Q. Liang, Q. M. Yang, W. C. Meng, Y. P. Li, Adaptive finite-time control for turbo-generator of power systems with prescribed performance, Asian J. Control, 24 (2022), 1597–1608. https://doi.org/10.1002/asjc.2553 doi: 10.1002/asjc.2553
    [25] H. D. Shan, H. Xue, S. L. Hu, H. J. Liang, Finite-time dynamic surface control for multi-agent systems with prescribed performance and unknown control directions, Int. J. Syst. Sci., 53 (2022), 325–336. https://doi.org/10.1080/00207721.2021.1954719 doi: 10.1080/00207721.2021.1954719
    [26] Z. G. Zhou, D. Zhou, X. N. Shi, R. F. Li, B. Q. Kan, Prescribed performance fixed-time tracking control for a class of second-order nonlinear systems with disturbances and actuator saturation, Int. J. Control, 94 (2021), 223–234. https://doi.org/10.1080/00207179.2019.1590644 doi: 10.1080/00207179.2019.1590644
    [27] L. B. Wu, G. H. Yang, Adaptive fault-tolerant control of a class of nonaffine nonlinear systems with mismatched parameter uncertainties and disturbances, Nonlinear Dyn., 82 (2015), 1281–1291. https://doi.org/10.1007/s11071-015-2235-6 doi: 10.1007/s11071-015-2235-6
    [28] H. Y. Li, S. Y. Zhao, W. He, R. Q. Lu, Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone, Automatica, 100 (2019), 99–107. https://doi.org/10.1016/j.automatica.2018.10.030 doi: 10.1016/j.automatica.2018.10.030
    [29] H. Q. Wang, J. W. Ma, X. D. Zhao, B. Niu, M. Chen, W. Wang, Adaptive fuzzy fixed-time control for high-order nonlinear systems with sensor and actuator faults, IEEE Trans. Fuzzy Syst., 31 (2023), 2658–2668. https://doi.org/10.1109/TFUZZ.2023.3235395 doi: 10.1109/TFUZZ.2023.3235395
    [30] S. Furuichi, N. Minculete, Alternative reverse inequalities for young's inequality, J. Math. Inequal., 5 (2011), 595–600.
    [31] F. Wang, G. Y. Lai, Fixed-time control design for nonlinear uncertain systems via adaptive method, Syst. Control Lett., 140 (2020), 104704. https://doi.org/10.1016/j.sysconle.2020.104704 doi: 10.1016/j.sysconle.2020.104704
    [32] Y. Zhang, F. Wang, Observer-based fixed-time neural control for a class of nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 2892–2902. https://doi.org/10.1109/TNNLS.2020.3046865 doi: 10.1109/TNNLS.2020.3046865
    [33] Y. X. Li, Command filter adaptive asymptotic tracking of uncertain nonlinear systems with time-varying parameters and disturbances, IEEE Trans. Autom. Control, 67 (2021), 2973–2980. https://doi.org/10.1109/TAC.2021.3089626 doi: 10.1109/TAC.2021.3089626
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(888) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog