Research article Special Issues

A practical approach to computing Lyapunov exponents of renewal and delay equations

  • Received: 13 October 2023 Revised: 01 December 2023 Accepted: 06 December 2023 Published: 26 December 2023
  • We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists of the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.

    Citation: Dimitri Breda, Davide Liessi. A practical approach to computing Lyapunov exponents of renewal and delay equations[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 1249-1269. doi: 10.3934/mbe.2024053

    Related Papers:

  • We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists of the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.



    加载中


    [1] O. Diekmann, S. M. Verduyn Lunel, Twin semigroups and delay equations, J. Differ. Equ., 286 (2021), 332–410. https://doi.org/10.1016/j.jde.2021.02.052 doi: 10.1016/j.jde.2021.02.052
    [2] D. Breda, E. Van Vleck, Approximating Lyapunov exponents and Sacker–Sell spectrum for retarded functional differential equations, Numer. Math., 126 (2014), 225–257. https://doi.org/10.1007/s00211-013-0565-1 doi: 10.1007/s00211-013-0565-1
    [3] D. Breda, S. Della Schiava, Pseudospectral reduction to compute Lyapunov exponents of delay differential equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2727–2741. https://doi.org/10.3934/dcdsb.2018092 doi: 10.3934/dcdsb.2018092
    [4] D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15 (2016), 1–23. https://doi.org/10.1137/15M1040931 doi: 10.1137/15M1040931
    [5] L. Dieci, E. S. Van Vleck, LESLIS and LESLIL: Codes for approximating Lyapunov exponents of linear systems, 2004, URL https://dieci.math.gatech.edu/software-les.html.
    [6] L. Dieci, M. S. Jolly, E. S. Van Vleck, Numerical techniques for approximating Lyapunov exponents and their implementation, J. Comput. Nonlinear Dynam., 6 (2011), 011003. https://doi.org/10.1115/1.4002088 doi: 10.1115/1.4002088
    [7] D. Breda, O. Diekmann, D. Liessi, F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 65. https://doi.org/10.14232/ejqtde.2016.1.65 doi: 10.14232/ejqtde.2016.1.65
    [8] F. Scarabel, O. Diekmann, R. Vermiglio, Numerical bifurcation analysis of renewal equations via pseudospectral approximation, J. Comput. Appl. Math., 397 (2021), 113611. https://doi.org/10.1016/j.cam.2021.113611 doi: 10.1016/j.cam.2021.113611
    [9] L. Y. Adrianova, Introduction to Linear Systems of Differential Equations, no. 146 in Transl. Math. Monogr., American Mathematical Society, Providence, RI, 1995.
    [10] G. A. Leonov, N. V. Kuznetsov, Time-varying linearization and the Perron effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 1079–1107. https://doi.org/10.1142/S0218127407017732 doi: 10.1142/S0218127407017732
    [11] L. Barreira, C. Valls, Stability of the Lyapunov exponents under perturbations, Ann. Funct. Anal., 8 (2017), 398–410. https://doi.org/10.1215/20088752-2017-0005 doi: 10.1215/20088752-2017-0005
    [12] L. Dieci, E. S. Van Vleck, Lyapunov spectral intervals: Theory and computation, SIAM J. Numer. Anal., 40 (2002), 516–542. https://doi.org/10.1137/S0036142901392304 doi: 10.1137/S0036142901392304
    [13] G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, 15 (1980), 9–20. https://doi.org/10.1007/BF02128236 doi: 10.1007/BF02128236
    [14] G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical application, Meccanica, 15 (1980), 21–30. https://doi.org/10.1007/BF02128237 doi: 10.1007/BF02128237
    [15] D. Breda, Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents, Differential Integral Equations, 23 (2010), 935–956. https://doi.org/10.57262/die/1356019118 doi: 10.57262/die/1356019118
    [16] J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Phys. D., 4 (1982), 366–393. https://doi.org/10.1016/0167-2789(82)90042-2 doi: 10.1016/0167-2789(82)90042-2
    [17] M. D. Chekroun, M. Ghil, H. Liu, S. Wang, Low-dimensional Galerkin approximations of nonlinear delay differential equations, Discrete Contin. Dyn. Syst., 36 (2016), 4133–4177. https://doi.org/10.3934/dcds.2016.36.4133 doi: 10.3934/dcds.2016.36.4133
    [18] O. Diekmann, P. Getto, M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2008), 1023–1069. https://doi.org/10.1137/060659211 doi: 10.1137/060659211
    [19] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H.-O. Walther, Delay Equations: Functional-, Complex- and Nonlinear Analysis, no. 110 in Appl. Math. Sci., Springer, New York, 1995. https://doi.org/10.1007/978-1-4612-4206-2
    [20] J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, no. 99 in Appl. Math. Sci., Springer, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7
    [21] J. Ripoll, J. Font, Numerical approach to an age-structured Lotka–Volterra model, Math. Biosci. Eng., 20 (2023), 15603–15622. https://doi.org/10.3934/mbe.2023696 doi: 10.3934/mbe.2023696
    [22] L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools, Society for Industrial and Applied Mathematics, Philadelphia, 2000. https://doi.org/10.1137/1.9780898719598
    [23] J.-P. Berrut, L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), 501–517. https://doi.org/10.1137/S0036144502417715 doi: 10.1137/S0036144502417715
    [24] C. W. Clenshaw, A. R. Curtis, A method for numerical integration on an automatic computer, SIAM J. Numer. Anal., 2 (1960), 197–205. https://doi.org/10.1007/BF01386223 doi: 10.1007/BF01386223
    [25] L. N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Rev., 50 (2008), 67–87. https://doi.org/10.1137/060659831 doi: 10.1137/060659831
    [26] J. R. Dormand, P. J. Prince, A family of embedded Runge–Kutta formulae, J. Comput. Appl. Math., 6 (1980), 19–26. https://doi.org/10.1016/0771-050X(80)90013-3 doi: 10.1016/0771-050X(80)90013-3
    [27] L. F. Shampine, M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18 (1980), 1–22. https://doi.org/10.1137/S1064827594276424 doi: 10.1137/S1064827594276424
    [28] E. Messina, E. Russo, A. Vecchio, A stable numerical method for Volterra integral equations with discontinuous kernel, J. Math. Anal. Appl., 337 (2008), 1383–1393. https://doi.org/10.1016/j.jmaa.2007.04.059 doi: 10.1016/j.jmaa.2007.04.059
    [29] D. Breda, D. Liessi, Approximation of eigenvalues of evolution operators for linear renewal equations, SIAM J. Numer. Anal., 56 (2018), 1456–1481. https://doi.org/10.1137/17M1140534 doi: 10.1137/17M1140534
    [30] D. Breda, D. Liessi, R. Vermiglio, Piecewise discretization of monodromy operators of delay equations on adapted meshes, J. Comput. Dyn., 9 (2022), 103–121. https://doi.org/10.3934/jcd.2022004 doi: 10.3934/jcd.2022004
    [31] D. Breda, D. Liessi, R. Vermiglio, A practical guide to piecewise pseudospectral collocation for Floquet multipliers of delay equations in MATLAB, submitted.
    [32] A. Bellen, Z. Jackiewicz, R. Vermiglio, M. Zennaro, Natural continuous extensions of Runge–Kutta methods for Volterra integral equations of the second kind and their application, Math. Comp., 52 (1989), 49–63. https://doi.org/10.1090/S0025-5718-1989-0971402-3 doi: 10.1090/S0025-5718-1989-0971402-3
    [33] R. Vermiglio, On the stability of Runge–Kutta methods for delay integral equations, Numer. Math., 61 (1992), 561–577. https://doi.org/10.1007/BF01385526 doi: 10.1007/BF01385526
    [34] H. Brunner, Collocation and continuous implicit Runge–Kutta methods for a class of delay Volterra integral equations, J. Comput. Appl. Math., 53 (1994), 61–72. https://doi.org/10.1016/0377-0427(92)00125-S doi: 10.1016/0377-0427(92)00125-S
    [35] A. Andò, Convergence of collocation methods for solving periodic boundary value problems for renewal equations defined through finite-dimensional boundary conditions, Comput. Math. Methods, 3 (2021), e1190. https://doi.org/10.1002/cmm4.1190 doi: 10.1002/cmm4.1190
    [36] A. Andò, D. Breda, Piecewise orthogonal collocation for computing periodic solutions of coupled delay equations, Appl. Numer. Math.. https://doi.org/10.1016/j.apnum.2023.05.010 doi: 10.1016/j.apnum.2023.05.010
    [37] A. Andò, D. Breda, Piecewise orthogonal collocation for computing periodic solutions of renewal equations, submitted.
    [38] D. Breda, O. Diekmann, S. Maset, R. Vermiglio, A numerical approach for investigating the stability of equilibria for structured population models, J. Biol. Dyn., 7 (2013), 4–20. https://doi.org/10.1080/17513758.2013.789562 doi: 10.1080/17513758.2013.789562
    [39] D. Breda, D. Liessi, Approximation of eigenvalues of evolution operators for linear coupled renewal and retarded functional differential equations, Ric. Mat., 69 (2020), 457–481. https://doi.org/10.1007/s11587-020-00513-9 doi: 10.1007/s11587-020-00513-9
    [40] L. M. Abia, Ó. Angulo, J. C. López-Marcos, M. A. López-Marcos, Numerical integration of an age-structured population model with infinite life span, Appl. Math. Comput., 434 (2022), 127401. https://doi.org/10.1016/j.amc.2022.127401 doi: 10.1016/j.amc.2022.127401
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1144) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog