Research article

The diffusion identification in a SIS reaction-diffusion system

  • Received: 22 August 2023 Revised: 24 November 2023 Accepted: 12 December 2023 Published: 15 December 2023
  • This article is concerned with the determination of the diffusion matrix in the reaction-diffusion mathematical model arising from the spread of an epidemic. The mathematical model that we consider is a susceptible-infected-susceptible model with diffusion, which was deduced by assuming the following hypotheses: The total population can be partitioned into susceptible and infected individuals; a healthy susceptible individual becomes infected through contact with an infected individual; there is no immunity, and infected individuals can become susceptible again; the spread of epidemics arises in a spatially heterogeneous environment; the susceptible and infected individuals implement strategies to avoid each other by staying away. The spread of the dynamics is governed by an initial boundary value problem for a reaction-diffusion system, where the model unknowns are the densities of susceptible and infected individuals and the boundary condition models the fact that there is neither emigration nor immigration through their boundary. The reaction consists of two terms modeling disease transmission and infection recovery, and the diffusion is a space-dependent full diffusion matrix. The determination of the diffusion matrix was conducted by considering that we have experimental data on the infective and susceptible densities at some fixed time and in the overall domain where the population lives. We reformulated the identification problem as an optimal control problem where the cost function is a regularized least squares function. The fundamental contributions of this article are the following: The existence of at least one solution to the optimization problem or, equivalently, the diffusion identification problem; the introduction of first-order necessary optimality conditions; and the necessary conditions that imply a local uniqueness result of the inverse problem. In addition, we considered two numerical examples for the case of parameter identification.

    Citation: Aníbal Coronel, Fernando Huancas, Ian Hess, Alex Tello. The diffusion identification in a SIS reaction-diffusion system[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 562-581. doi: 10.3934/mbe.2024024

    Related Papers:

  • This article is concerned with the determination of the diffusion matrix in the reaction-diffusion mathematical model arising from the spread of an epidemic. The mathematical model that we consider is a susceptible-infected-susceptible model with diffusion, which was deduced by assuming the following hypotheses: The total population can be partitioned into susceptible and infected individuals; a healthy susceptible individual becomes infected through contact with an infected individual; there is no immunity, and infected individuals can become susceptible again; the spread of epidemics arises in a spatially heterogeneous environment; the susceptible and infected individuals implement strategies to avoid each other by staying away. The spread of the dynamics is governed by an initial boundary value problem for a reaction-diffusion system, where the model unknowns are the densities of susceptible and infected individuals and the boundary condition models the fact that there is neither emigration nor immigration through their boundary. The reaction consists of two terms modeling disease transmission and infection recovery, and the diffusion is a space-dependent full diffusion matrix. The determination of the diffusion matrix was conducted by considering that we have experimental data on the infective and susceptible densities at some fixed time and in the overall domain where the population lives. We reformulated the identification problem as an optimal control problem where the cost function is a regularized least squares function. The fundamental contributions of this article are the following: The existence of at least one solution to the optimization problem or, equivalently, the diffusion identification problem; the introduction of first-order necessary optimality conditions; and the necessary conditions that imply a local uniqueness result of the inverse problem. In addition, we considered two numerical examples for the case of parameter identification.



    加载中


    [1] R. M. Anderson, R. M. May, B. Anderson, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992.
    [2] J. D. Murray, Mathematical Biology: Ⅰ. An Introduction, Springer, 2002. https://doi.org/10.1007/b98868
    [3] J. D. Murray, Mathematical Biology: Ⅱ. Spatial Models and Biomedical Applications, Springer, 2003.
    [4] N. Bacaër, A Short History of Mathematical Population Dynamics, Springer Science and Business Media, 2011.
    [5] O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons, 2000.
    [6] V. Akimenko, An age-structured SIR epidemic model with fixed incubation period of infection, Comput. Math. Appl., 73 (2017), 1485–1504. https://doi.org/10.1016/j.camwa.2017.01.022 doi: 10.1016/j.camwa.2017.01.022
    [7] B. Armbruster, E. Beck, An elementary proof of convergence to the mean-field equations for an epidemic model, IMA J. Appl. Math., 82 (2017), 152–157. https://doi.org/10.1093/imamat/hxw010 doi: 10.1093/imamat/hxw010
    [8] J. Ge, L. Lin, L. Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2763–2776. https://doi.org/10.3934/dcdsb.2017134 doi: 10.3934/dcdsb.2017134
    [9] Q. Ge, Z. Li, Z. Teng, Probability analysis of a stochastic SIS epidemic model, Stochastics Dyn., 17 (2017), 1750041. https://doi.org/10.1142/S0219493717500411 doi: 10.1142/S0219493717500411
    [10] M. Koivu-Jolma, A. Annila, Epidemic as a natural process, Math. Biosci., 299 (2018), 97–102. https://doi.org/10.1016/j.mbs.2018.03.012 doi: 10.1016/j.mbs.2018.03.012
    [11] X. Lu, S. Wang, S. Liu, J. Li, An SEI infection model incorporating media impact, Math. Biosci. Eng., 14 (2017), 1317–1335. https://doi.org/10.3934/mbe.2017068 doi: 10.3934/mbe.2017068
    [12] A. Nwankwo, D. Okuonghae, Mathematical analysis of the transmission dynamics of HIV syphilis co-infection in the presence of treatment for syphilis, Bull. Math. Biol., 80 (2018), 437–492. https://doi.org/10.1007/s11538-017-0384-0 doi: 10.1007/s11538-017-0384-0
    [13] C. M. Saad-Roy, P. Van den Driessche, A. A. Yakubu, A mathematical model of anthrax transmission in animal populations, Bull. Math. Biol., 79 (2017), 303–324. https://doi.org/10.1007/s11538-016-0238-1 doi: 10.1007/s11538-016-0238-1
    [14] V. M. Veliov, Numerical approximations in optimal control of a class of heterogeneous systems, Comput. Math. Appl., 70 (2015), 2652–2660. https://doi.org/10.1016/j.camwa.2015.04.029 doi: 10.1016/j.camwa.2015.04.029
    [15] A. Widder, C. Kuehn, Heterogeneous population dynamics and scaling laws near epidemic outbreaks, Math. Biosci. Eng., 13 (2016), 1093–1118. https://doi.org/10.3934/mbe.2016032 doi: 10.3934/mbe.2016032
    [16] M. Roberts, A. Dobson, O. Restif, K. Wells, Challenges in modeling the dynamics of infectious diseases at the wildlife-human interface, Epidemics, 37 (2021), 100523. https://doi.org/10.1016/j.epidem.2021.100523 doi: 10.1016/j.epidem.2021.100523
    [17] A. Coronel, L. Friz, I. Hess, M. Zegarra, On the existence and uniqueness of an inverse problem in epidemiology, Appl. Anal., 3 (2021), 513–526. https://doi.org/10.1080/00036811.2019.1608964 doi: 10.1080/00036811.2019.1608964
    [18] W. E. Fitzgibbon, M. Langlais, J. J. Morgan, A mathematical model for indirectly transmitted diseases, Math. Biosci., 206 (2007), 233–248. https://doi.org/10.1016/j.mbs.2005.07.005 doi: 10.1016/j.mbs.2005.07.005
    [19] X. Huili, L. Bin, Solving the inverse problem of an SIS epidemic reaction-diffusion model by optimal control methods, Comput. Math. Appl., 70 (2015), 805–819. https://doi.org/10.1016/j.camwa.2015.05.025 doi: 10.1016/j.camwa.2015.05.025
    [20] N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, American Mathematical Society, 2008.
    [21] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural´ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, 1968.
    [22] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., 1996.
    [23] A. Coronel, F. Huancas, E. Lozada, M. Rojas-Medar, Results for a control problem for a SIS epidemic reaction-diffusion model, Symmetry 15 (2023), 1–14. https://doi.org/10.3390/sym15061224 doi: 10.3390/sym15061224
    [24] A. Coronel, F. Huancas, M. Sepúlveda, A note on the existence and stability of an inverse problem for a SIS model, Comput. Math. Appl., 77 (219), 3186–3194. https://doi.org/10.1016/j.camwa.2019.01.031 doi: 10.1016/j.camwa.2019.01.031
    [25] A. Coronel, F. Huancas, M. Sepúlveda, Identification of space distributed coefficients in an indirectly transmitted diseases model, Inverse Prob., 11 (2019), 115001. https://doi.org/10.1088/1361-6420/ab3a86 doi: 10.1088/1361-6420/ab3a86
    [26] A. E. Laaroussi, M. Rachik, M. Elhia, An optimal control problem for a spatiotemporal SIR model, Int. J. Dyn. Control, 6 (2018), 384–397. https://doi.org/10.1007/s40435-016-0283-5 doi: 10.1007/s40435-016-0283-5
    [27] K. Adnaoui, I. Elberrai, A. E. A. Laaroussi, K. Hattaf, A spatiotemporal SIR epidemic model two-dimensional with problem of optimal control, Bol. Soc. Parana. Mat., 40 (2022), 18. https://doi.org/10.5269/bspm.51110 doi: 10.5269/bspm.51110
    [28] M. Hinze, T. N. T. Quyen, Matrix coefficient identification in an elliptic equation with the convex energy functional method, Inverse Prob., 32 (2016), 085007. https://doi.org/10.1088/0266-5611/32/8/085007 doi: 10.1088/0266-5611/32/8/085007
    [29] S. Mondal, M. T. Nair, Identification of matrix diffusion coefficient in a parabolic PDE, Comput. Methods Appl. Math., 22 (2022), 413–441. https://doi.org/10.1515/cmam-2021-0061 doi: 10.1515/cmam-2021-0061
    [30] R. V. Kohn, B. D. Lowe, A variational method for parameter identification, RAIRO Model. Math. Anal. Numer., 22 (1988), 119–158. https://doi.org/10.1051/m2an/1988220101191 doi: 10.1051/m2an/1988220101191
    [31] M. S. Gockenbach, A. A. Khan, An abstract framework for elliptic inverse problems. Part 1: An output least-squares approach, Math. Mech. Solids, 12 (2005), 259–276. https://doi.org/10.1177/1081286505055758 doi: 10.1177/1081286505055758
    [32] B. Jadamba, A. A. Khan, M. Sama, Inverse problems on parameter identification in partial differential equations, in Mathematical Methods, Models and Algorithms in Science and Technology, World Scientific Publ., (2011), 228–258. https://doi.org/10.1142/9789814338820_0009
    [33] H. Amann, Global existence for semilinear parabolic problems, J. Reine Angew. Math., 360 (1985), 47–83. https://doi.org/10.1515/crll.1985.360.47 doi: 10.1515/crll.1985.360.47
    [34] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 1981. https://doi.org/10.1007/BFb0089647
    [35] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Springer, 1984. https://doi.org/10.1007/BFb0099278
    [36] Z. Du, R. Peng, A priori L$^\infty$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429–1439. https://doi.org/10.1007/s00285-015-0914-z doi: 10.1007/s00285-015-0914-z
    [37] L. Dung, Dissipativity and global attractors for a class of quasilinear parabolic systems, Commun. Partial Differ. Equations, 22 (1997), 413–433. https://doi.org/10.1080/03605309708821269 doi: 10.1080/03605309708821269
    [38] M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417–455. https://doi.org/10.1007/s00032-010-0133-4 doi: 10.1007/s00032-010-0133-4
    [39] L. C. Evans, Partial Differential Equations, American Mathematical Society, 1997.
    [40] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
    [41] S. Berres, R. Bürger, A. Coronel, M. Sepúlveda, Numerical identification of parameters for a strongly degenerate convection-diffusion problem modeling centrifugation of flocculated suspensions, Appl. Numer. Math., 52 (2005), 311–337. https://doi.org/10.1016/j.apnum.2004.08.002 doi: 10.1016/j.apnum.2004.08.002
    [42] A. Coronel, F. James, M. Sepúlveda, Numerical identification of parameters for a model of sedimentation processes, Inverse Prob., 19 (2003), 951–972. https://doi.org/10.1088/0266-5611/19/4/311 doi: 10.1088/0266-5611/19/4/311
    [43] X. Liu, Z. W. Yang, Numerical analysis of a reaction-diffusion susceptible-infected-susceptible epidemic model, Comput. Appl. Math., 41 (2022), 392. https://doi.org/10.1007/s40314-022-02113-9 doi: 10.1007/s40314-022-02113-9
    [44] B. Jadamba, A. A. Khan, M. Sama, H. J. Starkloff, C. Tammer, A convex optimization framework for the inverse problem of identifying a random parameter in a stochastic partial differential equation, SIAM/ASA J., 9 (2021), 119–158. https://doi.org/10.1137/20M1323953 doi: 10.1137/20M1323953
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1262) PDF downloads(106) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog