Research article Special Issues

Model of strategy control for delayed panic spread in emergencies


  • Received: 12 September 2023 Revised: 24 November 2023 Accepted: 30 November 2023 Published: 08 December 2023
  • In emergencies similar to virus spreading in an epidemic model, panic can spread in groups, which brings serious bad effects to society. To explore the transmission mechanism and decision-making behavior of panic, a government strategy was proposed in this paper to control the spread of panic. First, based on the SEIR epidemiological model, considering the delay effect between susceptible and exposed individuals and taking the infection rate of panic as a time-varying variable, a SEIR delayed panic spread model was established and the basic regeneration number of the proposed model was calculated. Second, the control strategy was expressed as a state delayed feedback and solved using the exact linearization method of nonlinear control system; the control law for the system was determined, and its stability was proven. The aim was to eradicate panic from the group so that the recovered group tracks the whole group asymptotically. Finally, we simulated the proposed strategy of controlling the spread of panic to illustrate our theoretical results.

    Citation: Rongjian Lv, Hua Li, Qiubai Sun, Bowen Li. Model of strategy control for delayed panic spread in emergencies[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 75-95. doi: 10.3934/mbe.2024004

    Related Papers:

  • In emergencies similar to virus spreading in an epidemic model, panic can spread in groups, which brings serious bad effects to society. To explore the transmission mechanism and decision-making behavior of panic, a government strategy was proposed in this paper to control the spread of panic. First, based on the SEIR epidemiological model, considering the delay effect between susceptible and exposed individuals and taking the infection rate of panic as a time-varying variable, a SEIR delayed panic spread model was established and the basic regeneration number of the proposed model was calculated. Second, the control strategy was expressed as a state delayed feedback and solved using the exact linearization method of nonlinear control system; the control law for the system was determined, and its stability was proven. The aim was to eradicate panic from the group so that the recovered group tracks the whole group asymptotically. Finally, we simulated the proposed strategy of controlling the spread of panic to illustrate our theoretical results.



    加载中


    [1] A. Sharma, B. McCloskey, D. S. Hui, A. Rambia, A. Zumla, T. Traore, et al., Global mass gathering events and deaths due to crowd surge, stampedes, crush and physical injuries – Lessons from the Seoul Halloween and other disasters, Travel Med. Infect. Di., 52 (2023), 102524. https://doi.org/10.1016/j.tmaid.2022.102524 doi: 10.1016/j.tmaid.2022.102524
    [2] N. A. Sivadas, P. Panda, A. Mahajan, Control strategies for the COVID-19 infection wave in India: A mathematical model incorporating vaccine effectiveness, IEEE Trans. Comput. Social Syst., (2022), 1–11. https://doi.org/10.1109/TCSS.2022.3210404 doi: 10.1109/TCSS.2022.3210404
    [3] E. C. Gabrick, P. R. Protachevicz, A. M. Batista, K. C. Iarosz, S. L.T. de Souza, A. C. L. Almeida, et al., Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton, Physica A, 597 (2022), 127258. https://doi.org/10.1016/j.physa.2022.127258 doi: 10.1016/j.physa.2022.127258
    [4] P. Lv, Z. Zhang, C. Li, Y. Guo, B. Zhou, M. Xu, Crowd behavior evolution with emotional contagion in political rallies, IEEE Trans. Comput. Social Syst., 6 (2019), 377–386. https://doi.org/10.1109/TCSS.2018.2878461 doi: 10.1109/TCSS.2018.2878461
    [5] W. Ross, A. Gorod, M. Ulieru, A socio-physical approach to systemic risk reduction in emergency response and preparedness, IEEE Trans. Syst. Man Cybern. Syst., 45 (2015), 1125–1137. https://doi.org/10.1109/TSMC.2014.2336831 doi: 10.1109/TSMC.2014.2336831
    [6] C. Li, P. Lv, D. Manocha, H. Wang, Y. Li, B. Zhou, et al., ACSEE: Antagonistic crowd simulation model with emotional contagion and evolutionary game theory, IEEE Trans. Affect. Comput., 13 (2019), 729–745. https://doi.org/10.48550/arXiv.1902.00380 doi: 10.48550/arXiv.1902.00380
    [7] M. Xu, C. Li, P. Lv, W. Chen, Z. Deng, B. Zhou, et al. Emotion-based crowd simulation model based on physical strength consumption for emergency scenarios, IEEE Trans. Intell. Transp. Syst., 22 (2021), 6977–6991. https://doi.org/10.1109/TITS.2020.3000607 doi: 10.1109/TITS.2020.3000607
    [8] M. Xu, X. Xie, P. Lv, J. Niu, H. Wang, C. Li, et al., Crowd behavior simulation with emotional contagion in unexpected multihazard situations, IEEE Trans. Syst. Man Cybern. Syst., 51 (2018), 1567–1581. https://doi.org/10.1109/TSMC.2019.2899047 doi: 10.1109/TSMC.2019.2899047
    [9] Y. Hu, Q. Pan, W. Hou, M. He, Rumor spreading model considering the proportion of wisemen in the crowd, Phys. A, 505 (2018), 1084–1094. https://doi.org/10.1016/j.physa.2018.04.056 doi: 10.1016/j.physa.2018.04.056
    [10] M. Cao, G. Zhang, M. Wang, D. Lu, H. Liu, A method of emotion contagion for crowd evacuation, Phys. A, 483 (2017), 250–258. https://doi.org/10.1016/j.physa.2017.04.137 doi: 10.1016/j.physa.2017.04.137
    [11] J. Wang, H. Jiang, T. Ma, C. Hu, Global dynamics of the multi-lingual SIR rumor spread-ing model with cross-transmitted mechanism, Chaos Solitons Fractals, 126 (2019), 148–157. https://doi.org/10.1016/j.chaos.2019.05.027 doi: 10.1016/j.chaos.2019.05.027
    [12] K. M. A. Kabir, K. Kuga, J. Tanimoto, Analysis of SIR epidemic model with information spreading of awareness, Chaos Solitons Fractals, 119 (2019), 118–125. https://doi.org/10.1016/j.chaos.2018.12.017 doi: 10.1016/j.chaos.2018.12.017
    [13] Y. Zhang, D. Pan, Layered SIRS model of information spread in complex networks, Appl. Math. Comput., 411 (2021), 126524. https://doi.org/10.1016/j.amc.2021.126524 doi: 10.1016/j.amc.2021.126524
    [14] D. Zhao, L. Wang, Z. Wang, G. Xiao, Virus propagation and patch distribution in multiplex networks: Modeling, analysis, and optimal allocation, IEEE Trans. Inform. Foren. Sec., 14 (2019), 1755–1767. https://doi.org/10.1109/TIFS.2018.2885254 doi: 10.1109/TIFS.2018.2885254
    [15] H. Guo, Z. Zhang, S. Sun, C. Xia, Interplay between epidemic spread and information diffusion on two-layered networks with partial mapping, Phys. Lett. A, 398 (2021), 127282. https://doi.org/10.1016/j.physleta.2021.127282 doi: 10.1016/j.physleta.2021.127282
    [16] H. O. Duarte, P. G. Siqueira, A. C. A. Oliveira, M. C. Moura, A probabilistic epidemiological model for infectious diseases: The case of COVID-19 at global-level, Risk Anal., 43 (2022), 183–201. https://doi.org/10.1111/risa.13950 doi: 10.1111/risa.13950
    [17] L. Basnarkov, I. Tomovski, T. Tomovski, L. Kocarev, Non-Markovian SIR epidemic spreading model of COVID-19, Chaos Solitons Fractals, 160 (2022), 112286. https://doi.org/10.1016/j.chaos.2022.112286 doi: 10.1016/j.chaos.2022.112286
    [18] Y. Yu, L. Ding, L. Lin, P. Hu, X. An, Stability of the SNIS epidemic spreading model with contagious incubation period over heterogeneous networks, Phys. A, 526 (2019), 120878. https://doi.org/10.1016/j.physa.2019.04.114 doi: 10.1016/j.physa.2019.04.114
    [19] S. Saha, P. Dutta, G. Dutta, Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments, Chaos Solitons Fractals, 164 (2022), 112643. https://doi.org/10.1016/j.chaos.2022.112643 doi: 10.1016/j.chaos.2022.112643
    [20] S. Biernacki, K. Malarz, Does social distancing matter for infectious disease propagation? An SEIR model and Gompertz law based cellular automaton, Entropy, 24 (2022). https://doi.org/10.3390/e24060832 doi: 10.3390/e24060832
    [21] A. Isidori, Nonlinear Control Systems, 3rd edition, Springer Science & Business Media, Berlin, 1955.
    [22] M. De la Sen, S. Alonso-Quesada, Vaccination strategies based on feedback control techniques for a general SEIR-epidemic model, Appl. Math. Comput., 218 (2011), 3888–3904. https://doi.org/10.1016/j.amc.2011.09.036 doi: 10.1016/j.amc.2011.09.036
    [23] M. De la Sen, A. Ibeas, S. Alonso-Quesada, On vaccination controls for the SEIR epidemic model, Commun. Nonlinear Sci., 17 (2012), 2637–2658. https://doi.org/10.1016/j.cnsns.2011.10.012 doi: 10.1016/j.cnsns.2011.10.012
    [24] M. De la Sen, S. Alonso-Quesada, A. Ibeas, R. Nistal, An observer-based vaccination control law for an SEIR epidemic model based on feedback linearization techniques for nonlinear systems, Adv. Differ. Equations, 4 (2012), 379–385. https://doi.org/10.7763/IJCTE.2012.V4.488 doi: 10.7763/IJCTE.2012.V4.488
    [25] M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
    [26] S. Zhai, G. Luo, T. Huang, X. Wang, J. Tao, P. Zhou, Vaccination control of an epidemic model with time delay and its application to COVID-19, Nonlinear Dyn., 106 (2021), 1279–1292. https://doi.org/10.1007/s11071-021-06533-w doi: 10.1007/s11071-021-06533-w
    [27] A Ibeas, M de la Sen, S. Alonso-Quesada, I. Zamani, Stability analysis and observer design for discrete-time SEIR epidemic models, Adv. Differ. Equations, 2015 (2015), 122. https://doi.org/10.1186/s13662-015-0459-x doi: 10.1186/s13662-015-0459-x
    [28] S. Alonso-Quesada, S. Alonso-Quesada, A. Ibeas, On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination, Commun. Nonlinear Sci., 42 (2017), 247–274. https://doi.org/10.1016/j.cnsns.2016.05.027 doi: 10.1016/j.cnsns.2016.05.027
    [29] H. Guo, L. Chen, X. Song, Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control, Int. J. Biomath., 10 (2017), 1750093. https://doi.org/10.1142/S1793524517500930 doi: 10.1142/S1793524517500930
    [30] M. De la Sen, A. Ibeas, S. Alonso-Quesada, On the supervision of a saturated SIR epidemic model with four joint control actions for a drastic reduction in the infection and the susceptibility through time, Int. J. Env. Res. Public Health, 19 (2022), 1512. https://doi.org/10.3390/ijerph19031512 doi: 10.3390/ijerph19031512
    [31] V. Piccirillo, Nonlinear control of infection spread based on a deterministic SEIR model, Chaos Solitons Fractals, 149 (2021), 111051. https://doi.org/10.1016/j.chaos.2021.111051 doi: 10.1016/j.chaos.2021.111051
    [32] A. H. A. Mehra, I. Zamani, Z. Abbasi, A. Ibeas, Observer-based adaptive PI sliding mode control of developed uncertain SEIAR influenza epidemic model considering dynamic population, J. Theor. Biol., 482 (2019), 109984. https://doi.org/10.1016/j.jtbi.2019.08.015 doi: 10.1016/j.jtbi.2019.08.015
    [33] H. J. Lee, Robust static output-feedback vaccination policy design for an uncertain SIR epidemic model with disturbances: Positive Takagi-Sugeno model approach, Biomed. Signal Proces., 72 (2022), 103273. https://doi.org/10.1016/j.bspc.2021.103273 doi: 10.1016/j.bspc.2021.103273
    [34] A. Khan, X. Bai, M. Ilyas, A. Rauf, W. Xie, P. Yan, et al., Design and application of an interval estimator for nonlinear discrete-time SEIR epidemic models, Fractal Fract., 6 (2022), 213. https://doi.org/10.3390/fractalfract6040213 doi: 10.3390/fractalfract6040213
    [35] Y. Yuan, N. Li, Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness, Phys. A, 603 (2022), 127804. https://doi.org/10.1016/j.physa.2022.127804 doi: 10.1016/j.physa.2022.127804
    [36] Z. Abbasi, I. Zamani, A. H. A. Mehra, M. Shafieirad, A. Ibeas, Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19, Chaos Solitons Fractals, 139 (2020), 110054. https://doi.org/10.1016/j.chaos.2020.110054 doi: 10.1016/j.chaos.2020.110054
    [37] T. R. Dawber, G. F. Meadors, F. E. Moore, Epidemiological approaches to heart disease: the Framingham study, Am J. Public Health, 41 (1951), 279–281. https://doi.org/10.2105/ajph.41.3.279 doi: 10.2105/ajph.41.3.279
    [38] A. L. Hill, D. G. Rand, M. A. Nowak, N. A. Christakis, Emotions as infectious diseases in a large social network: the SISa model, P. Roy. Soc. B-Biol. Sci., 277 (2010), 3827–3835. https://doi.org/10.1098/rspb.2010.1217 doi: 10.1098/rspb.2010.1217
    [39] H. Zhao, J. Jiang, R. Xu, Y. Ye, SIRS model of passengers' panic propagation under self-organization circumstance in the subway emergency, Math. Probl. Eng., 2014 (2014), 1–12. https://doi.org/10.1155/2014/608315 doi: 10.1155/2014/608315
    [40] L. Fu, W. Song, W. Lv, S. Lo, Simulation of emotional contagion using modified SIR model: A cellular automaton approach, Phys. A, 405 (2014), 380–391. https://doi.org/10.1016/j.physa.2014.03.043 doi: 10.1016/j.physa.2014.03.043
    [41] J. Xue, M. Zhang, H. Yin, A personality-based model of emotional contagion and control in crowd queuing simulations, Acm Trans. Model. Comput. Simul., 33 (2023), 1–23. https://doi.org/10.1145/3577589 doi: 10.1145/3577589
    [42] G. Chen, H. She, G. Chen, T. Ye, X. Tang, N. Kerr, A new kinetic model to discuss the control of panic spreading in emergency, Phys. A, 417 (2015), 345–357. https://doi.org/10.1016/j.physa.2014.09.055 doi: 10.1016/j.physa.2014.09.055
    [43] L. Yang, X. Yang, The impact of nonlinear infection rate on the spread of computer virus, Nonlinear Dyn., 82 (2015), 85–95. https://doi.org/10.1007/s11071-015-2140-z doi: 10.1007/s11071-015-2140-z
    [44] J. Liu, T. Saeed, A. Zeb, Delay effect of an e-epidemic SEIRS malware propagation model with a generalized non-monotone incidence rate, Results Phys., 39 (2022), 105672. https://doi.org/10.1016/j.rinp.2022.105672 doi: 10.1016/j.rinp.2022.105672
    [45] S. Busenberg, K. L. Cooke, The effect of integral conditions in certain equations modelling epidemics and population growth, J. Math. Biol., 10 (1980), 13–32. https://doi.org/10.1007/BF00276393 doi: 10.1007/BF00276393
    [46] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [47] Y. Hu, Theory and Application of Nonlinear Control Systems, National Defense Industry Press, Beijing, 2002.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1220) PDF downloads(90) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog