Normal lung cells incur genetic damage over time, which causes unchecked cell growth and ultimately leads to lung cancer. Nearly 85% of lung cancer cases are caused by smoking, but there exists factual evidence that beta-carotene supplements and arsenic in water may raise the risk of developing the illness. Asbestos, polycyclic aromatic hydrocarbons, arsenic, radon gas, nickel, chromium and hereditary factors represent various lung cancer-causing agents. Therefore, deep learning approaches are employed to quicken the crucial procedure of diagnosing lung cancer. The effectiveness of these methods has increased when used to examine cancer histopathology slides. Initially, the data is gathered from the standard benchmark dataset. Further, the pre-processing of the collected images is accomplished using the Gabor filter method. The segmentation of these pre-processed images is done through the modified expectation maximization (MEM) algorithm method. Next, using the histogram of oriented gradient (HOG) scheme, the features are extracted from these segmented images. Finally, the classification of lung cancer is performed by the improved graph neural network (IGNN), where the parameter optimization of graph neural network (GNN) is done by the green anaconda optimization (GAO) algorithm in order to derive the accuracy maximization as the major objective function. This IGNN classifies lung cancer into normal, adeno carcinoma and squamous cell carcinoma as the final output. On comparison with existing methods with respect to distinct performance measures, the simulation findings reveal the betterment of the introduced method.
Citation: S. Dinesh Krishnan, Danilo Pelusi, A. Daniel, V. Suresh, Balamurugan Balusamy. Improved graph neural network-based green anaconda optimization for segmenting and classifying the lung cancer[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 17138-17157. doi: 10.3934/mbe.2023764
Normal lung cells incur genetic damage over time, which causes unchecked cell growth and ultimately leads to lung cancer. Nearly 85% of lung cancer cases are caused by smoking, but there exists factual evidence that beta-carotene supplements and arsenic in water may raise the risk of developing the illness. Asbestos, polycyclic aromatic hydrocarbons, arsenic, radon gas, nickel, chromium and hereditary factors represent various lung cancer-causing agents. Therefore, deep learning approaches are employed to quicken the crucial procedure of diagnosing lung cancer. The effectiveness of these methods has increased when used to examine cancer histopathology slides. Initially, the data is gathered from the standard benchmark dataset. Further, the pre-processing of the collected images is accomplished using the Gabor filter method. The segmentation of these pre-processed images is done through the modified expectation maximization (MEM) algorithm method. Next, using the histogram of oriented gradient (HOG) scheme, the features are extracted from these segmented images. Finally, the classification of lung cancer is performed by the improved graph neural network (IGNN), where the parameter optimization of graph neural network (GNN) is done by the green anaconda optimization (GAO) algorithm in order to derive the accuracy maximization as the major objective function. This IGNN classifies lung cancer into normal, adeno carcinoma and squamous cell carcinoma as the final output. On comparison with existing methods with respect to distinct performance measures, the simulation findings reveal the betterment of the introduced method.
[1] | A. Masood, P. Yang, B. Sheng, H. Li, P. Li, J. Qin, et al., Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT, IEEE J. Transl. Eng. Health Med., 8 (2020), 1–13, 2020. https://doi.org/10.1109/JTEHM.2019.2955458 doi: 10.1109/JTEHM.2019.2955458 |
[2] | E. H. Houssein, D. A. Abdelkareem, M. M. Emam, M. A. Hameed, M. Younan, An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm, Comput. Biol. Med., 149 (2022), 106075. https://doi.org/10.1016/j.compbiomed.2022.106075 doi: 10.1016/j.compbiomed.2022.106075 |
[3] | O. Ayyildiz, Z. Aydin, B. Yilmaz, S. Karaçavu, K. Senkaya, S. Içer, et al., Lung cancer subtype differentiation from positron emission tomography images, Turk. J. Electr. Eng. Comput. Sci., 28 (2020), 262–274. https://doi.org/10.3906/elk-1810-154 doi: 10.3906/elk-1810-154 |
[4] | L. Ren, D. Zhao, X. Zhao, W. Chen, L. Li, T. Wu, et al., Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution, Comput. Biol. Med., 148 (2022), 105910. https://doi.org/10.1016/j.compbiomed.2022.105910 doi: 10.1016/j.compbiomed.2022.105910 |
[5] | C. Zappa, S. A. Mousa, Non-small cell lung cancer: Current treatment and future advances, Transl. Lung Cancer Res., 5 (2016), 288–300. https://doi.org/10.21037/tlcr.2016.06.07 doi: 10.21037/tlcr.2016.06.07 |
[6] | M. M. Emam, E. H. Houssein, R. M. Ghoniem, A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images, Comput. Biol. Med., 152 (2023), 106404. https://doi.org/10.1016/j.compbiomed.2022.106404 doi: 10.1016/j.compbiomed.2022.106404 |
[7] | V. K. Anagnostou, A. T. Dimou, T. Botsis, E. J. Killiam, M. D. Gustavson, R. J. Homer, et al., Molecular classification of nonsmall cell lung cancer using a 4-protein quantitative assay, Cancer, 118 (2012), 1607–1618. https://doi.org/10.1002/cncr.26450 doi: 10.1002/cncr.26450 |
[8] | K. M. Hosny, A. M. Khalid, H. M. Hamza, S. Mirjalili, Multilevel segmentation of 2D and volumetric medical images using hybrid Coronavirus Optimization Algorithm, Comput. Biol. Med., 150 (2022), 106003. https://doi.org/10.1016/j.compbiomed.2022.106003 doi: 10.1016/j.compbiomed.2022.106003 |
[9] | F. Ciompi, K. Chung, S. J. van Riel, A. A. A. Setio, P. K. Gerke, C. Jacobs, et al., Towards automatic pulmonary nodule management in lung cancer screening with deep learning, Sci. Rep., 7 (2017), 1–11. https://doi.org/10.1038/srep46479 doi: 10.1038/srep46479 |
[10] | W. Zhu, L. Liu, F. Kuang, L. Li, S. Xu, Y. Liang, An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer, Comput. Biol. Med., 151 (2022), 106227. https://doi.org/10.1016/j.compbiomed.2022.106227 doi: 10.1016/j.compbiomed.2022.106227 |
[11] | J. J. Chabon, E. G. Hamilton, D. M. Kurtz, M. S. Esfahani, E. J. Moding, H. Stehr, et al., Integrating genomic features for non-invasive early lung cancer detection, Nature, 580 (2020), 245–251. https://doi.org/10.1038/s41586-020-2140-0 doi: 10.1038/s41586-020-2140-0 |
[12] | A. Masood, B. Sheng, P. Yang, P. Li, D. D. Feng, Automated decision support system for lung cancer detection and classification via enhanced RFCN with multilayer fusion RPN, IEEE Trans. Ind. Inf., 16 (2020), 7791–7801. https://doi.org/10.1109/TⅡ.2020.2972918 doi: 10.1109/TⅡ.2020.2972918 |
[13] | M. Bicakci, O. Ayyildiz, Z. Aydin, A. Basturk, S. Karacavus, B. Yilmaz, Metabolic imaging based sub-classification of lung cancer, IEEE Access, 8 (2020), 218470–218476. https://doi.org/10.1109/ACCESS.2020.3040155 doi: 10.1109/ACCESS.2020.3040155 |
[14] | Y. Chen, Y. Wang, F. Hu, L. Feng, T. Zhou, C. Zheng, LDNNET: Towards robust classification of lung nodule and cancer using lung dense neural network, IEEE Access, 9 (2021), 50301–50320. http://doi.org/10.1109/ACCESS.2021.3068896 doi: 10.1109/ACCESS.2021.3068896 |
[15] | M. Li, X. Ma, C. Chen, Y. Yuan, S. Zhang, Z. Yan, et al., Research on the auxiliary classification and diagnosis of lung cancer subtypes based on histopathological images, IEEE Access, 9 (2021), 53687–53707. https://doi.org/10.1109/ACCESS.2021.3071057 doi: 10.1109/ACCESS.2021.3071057 |
[16] | E. A. Siddiqui, V. Chaurasia, M. Shandilya, Detection and classification of lung cancer computed tomography images using a novel improved deep belief network with Gabor filters, Chemom. Intell. Lab. Syst., 235 (2023), 104763. https://doi.org/10.1016/j.chemolab.2023.104763 doi: 10.1016/j.chemolab.2023.104763 |
[17] | A. K. Ajai, A. Anitha, Clustering based lung lobe segmentation and optimization-based lung cancer classification using CT images, Biomed. Signal Process. Control, 78 (2022), 103986. https://doi.org/10.1016/j.bspc.2022.103986 doi: 10.1016/j.bspc.2022.103986 |
[18] | A. R. Bushara, R. S. Vinod Kumar, S. S. Kumar, LCD-capsule network for the detection and classification of lung cancer on computed tomography images, Multimedia Tools Appl., 2023 (2023), 1–20. https://doi.org/10.1007/s11042-023-14893-1 doi: 10.1007/s11042-023-14893-1 |
[19] | D. S. Manoharan, A. Sathesh, Improved version of graph-cut algorithm for CT images of lung cancer with clinical property condition, J. Artif. Intell., 2 (2020), 201–206. https://doi.org/10.36548/jaicn.2020.4.002 doi: 10.36548/jaicn.2020.4.002 |
[20] | A. Alsadoon, G. Al-Naymat, A. H. Osman, B. Alsinglawi, M. Maabreh, M. R. Islam, DFCV: A framework for evaluation deep learning in early detection and classification of lung cancer, Multimedia Tools Appl., 93 (2023), 1–44. https://doi.org/10.1007/s11042-023-15238-8 doi: 10.1007/s11042-023-15238-8 |
[21] | M. Braveen, S. Nachiyappan, R. Seetha, K. Anusha, A. Ahilan, A. Prasanth, et al., ALBAE feature extraction-based lung pneumonia and cancer classification, Soft Comput., 155 (2023), 1–14. https://doi.org/10.1007/s00500-023-08453-w doi: 10.1007/s00500-023-08453-w |
[22] | Y. Chen, C. Liu, W. Huang, S. Cheng, R. Arcucci, Z. Xiong, Generative text-guided 3D vision-language pretraining for unified medical image segmentation, arXiv preprint, (2023), arXiv: 2306.04811. https://doi.org/10.48550/arXiv.2306.04811 |
[23] | Z. Qin, H. Yi, Q. Lao, K. Li, Medical image understanding with pre-trained vision language models: A comprehensive study, arXiv preprint, (2022), arXiv: 2209.15517. https://doi.org/10.48550/arXiv.2209.15517 |
[24] | Z. Wan, C. Liu, M. Zhang, J. Fu, B. Wang, S. Cheng, et al., Med-UniC: Unifying cross-lingual medical vision-language pre-training by diminishing bias, arXiv preprint, (2023), arXiv: 2305.19894. https://doi.org/10.48550/arXiv.2305.19894 |
[25] | M. Lavanya, P. Muthu Kannan, Lung cancer segmentation and diagnosis of lung cancer staging using MEM (modified expectation maximization) algorithm and artificial neural network fuzzy inference system (ANFIS), Biomed. Res., 29 (2018), 2919–2924. https://doi.org/10.4066/biomedicalresearch.29-18-740 doi: 10.4066/biomedicalresearch.29-18-740 |
[26] | F. Mirzakhani, Detection of lung cancer using multilayer perceptron neural network, Med. Technol. J., 1 (2017), 109. http://doi.org/10.26415/2572-004X-vol1iss4p109 doi: 10.26415/2572-004X-vol1iss4p109 |
[27] | N. Shukla, A. Narayane, A. Nigade, K. Yadav, H. Mhaske, Lung cancer detection and classification using Support Vector Machine, Int. J. Adv. Trends Comput. Sci. Eng., 4 (2015), 14983–14986. http://doi.org/10.18535/Ijecs/v4i11.20 doi: 10.18535/Ijecs/v4i11.20 |
[28] | M. Grace John, S. Baskar, Extreme learning machine algorithm-based model for lung cancer classification from histopathological real-time images, Comput. Intell., 2023 (2023). https://doi.org/10.1111/coin.12576 doi: 10.1111/coin.12576 |
[29] | F. Zhu, Z. Gao, C. Zhao, Z. Zhu, J. Tang, Y. Liu, et al., Semantic segmentation using deep learning to extract total extraocular muscles and optic nerve from orbital computed tomography images, Optik, 244 (2021), 167551. https://doi.org/10.1016/j.ijleo.2021.167551 doi: 10.1016/j.ijleo.2021.167551 |
[30] | Y. Song, J. Liu, X. Liu, J. Tang, COVID-19 infection segmentation and severity assessment using a self-supervised learning approach, Diagnostics, 12 (2022), 1805. https://doi.org/10.3390/diagnostics12081805 doi: 10.3390/diagnostics12081805 |
[31] | M. A. Heuvelmans, P. M. A. van Ooijen, S. Ather, C. F. Silva, D. Han, C. P. Heussel, et al., Lung cancer prediction by deep learning to identify benign lung nodules, Lung Cancer, 154 (2021), 1–4. https://doi.org/10.1016/j.lungcan.2021.01.027 doi: 10.1016/j.lungcan.2021.01.027 |