To study the value of ICG molecular fluorescence imaging in laparoscopic hepatectomy for PLC.
CNKI, WD, VIP.com, PM, CL and WOS databases were selected to search for literature on precise and traditional hepatectomy for the treatment of PLC.
A total of 33 articles were used, including 3987 patients, 2102 in precision and 1885 in traditional. Meta showed that the operation time of precision was longer, while IBV, HS, PLFI, ALT, TBil, ALB, PCR, PROSIM, RMR and 1-year SR had advantages.
Hepatectomy with the concept of PS is a safe and effective method of PLC that can reduce the amount of IB, reduce surgery, reduce PC and improve prognosis and quality of life.
Citation: Pan Lu, Wei Zhang, Long Chen, Wentao Li, Xinyi Liu. RETRACTED ARTICLE: ICG fluorescence imaging technology in laparoscopic liver resection for primary liver cancer: A meta-analysis[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 15918-15941. doi: 10.3934/mbe.2023709
To study the value of ICG molecular fluorescence imaging in laparoscopic hepatectomy for PLC.
CNKI, WD, VIP.com, PM, CL and WOS databases were selected to search for literature on precise and traditional hepatectomy for the treatment of PLC.
A total of 33 articles were used, including 3987 patients, 2102 in precision and 1885 in traditional. Meta showed that the operation time of precision was longer, while IBV, HS, PLFI, ALT, TBil, ALB, PCR, PROSIM, RMR and 1-year SR had advantages.
Hepatectomy with the concept of PS is a safe and effective method of PLC that can reduce the amount of IB, reduce surgery, reduce PC and improve prognosis and quality of life.
[1] | R. Souzaki, N. Kawakubo, T. Matsuura, K. Yoshimaru, Y. Koga, J. Takemoto, et al., Navigation surgery using indocyanine green fluorescent imaging for hepatoblastoma patients, Pediatr. Surg. Int., 35 (2019), 551–557. https://doi.org/10.1007/s00383-019-04458-5 doi: 10.1007/s00383-019-04458-5 |
[2] | R. S. Whitlock, K. R. Patel, T. Yang, H. N. Nguyen, P. Masand, S. A. Vasudevan, Pathologic correlation with near infrared-indocyanine green guided surgery for pediatric liver cancer, J. Pediatr. Surg., 57 (2022), 700–710. https://doi.org/10.1016/j.jpedsurg.2021.04.019 doi: 10.1016/j.jpedsurg.2021.04.019 |
[3] | P. He, T. Huang, C. Fang, S. Su, J. Tian, X. Xia, et al., Identification of extrahepatic metastasis of hepatocellular carcinoma using indocyanine green fluorescence imaging, Photodiagn. Photodyn. Ther., 25 (2019), 417–420. https://doi.org/10.1016/j.pdpdt.2019.01.031 doi: 10.1016/j.pdpdt.2019.01.031 |
[4] | G. Piccolo, M. Barabino, M. Diana, E. Lo Menzo, A. G. Epifani, F. Lecchi, et al., Application of indocyanine green fluorescence as an adjuvant to laparoscopic ultrasound in minimally invasive liver resection, J. Laparoendosc. Adv. Surg. Tech., 31 (2021), 517–523. https://doi.org/10.1089/lap.2020.0895 doi: 10.1089/lap.2020.0895 |
[5] | E. Lieto, G. Galizia, F. Cardella, A. Mabilia, N. Basile, P. Castellano, et al., Indocyanine green fluorescence imaging-guided surgery in primary and metastatic liver tumors, Surg. Innovation, 25 (2018), 62–68. https://doi.org/10.1177/1553350617751451 doi: 10.1177/1553350617751451 |
[6] | Y. Xu, M. Chen, X. Meng, P. Lu, X. Wang, W. Zhang, et al., Laparoscopic anatomical liver resection guided by real-time indocyanine green fluorescence imaging: experience and lessons learned from the initial series in a single center, Surg. Endoscopy, 34 (2020), 4683–4691. https://doi.org/10.1007/s00464-020-07691-5 doi: 10.1007/s00464-020-07691-5 |
[7] | Y. Miyazaki, M. Kurata, Y. Oshiro, O. Shimomura, K. Takahashi, T. Oda, et al., Indocyanine green fluorescence-navigated laparoscopic metastasectomy for peritoneal metastasis of hepatocellular carcinoma: a case report, Surg. Case Rep., 4 (2018), 1–4. https://doi.org/10.1186/s40792-018-0537-x doi: 10.1186/s40792-018-0537-x |
[8] | E. Kose, B. Kahramangil, H. Aydin, M. Donmez, H. Takahashi, L. A. Acevedo-Moreno, et al., A comparison of indocyanine green fluorescence and laparoscopic ultrasound for detection of liver tumors, HPB, 22 (2020), 764–769. https://doi.org/10.1016/j.hpb.2019.10.005 doi: 10.1016/j.hpb.2019.10.005 |
[9] | K. Yamamura, T. Beppu, N. Sato, K. Kinoshita, E. Oda, H. Yuki, et al., Complete removal of adrenal metastasis in hepatocellular carcinoma using indocyanine green fluorescent imaging, Anticancer Res., 40 (2020), 5823–5828. https://doi.org/10.21873/anticanres.14600 doi: 10.21873/anticanres.14600 |
[10] | M. Franz, J. Arend, S. Wolff, A. Perrakis, M. Rahimli, V. R. Negrini, et al., Tumor visualization and fluorescence angiography with indocyanine green (ICG) in laparoscopic and robotic hepatobiliary surgery—valuation of early adopters from Germany, Innovative surgical sciences, 6 (2021), 59–66. https://doi.org/10.1515/iss-2020-0019 doi: 10.1515/iss-2020-0019 |
[11] | T. Aoki, M. Murakami, T. Koizumi, K. Matsuda, A. Fujimori, T. Kusano, et al., Determination of the surgical margin in laparoscopic liver resections using infrared indocyanine green fluorescence, Langenbecks Arch. Surg., 403 (2018), 671–680. https://doi.org/10.1007/s00423-018-1685-y doi: 10.1007/s00423-018-1685-y |
[12] | H. Lu, J. Gu, X. F. Qian, X. Z. Dai, Indocyanine green fluorescence navigation in laparoscopic hepatectomy: a retrospective single-center study of 120 cases, Surg. Today, 51 (2021), 695–702. https://doi.org/10.1007/s00595-020-02163-8 doi: 10.1007/s00595-020-02163-8 |
[13] | T. Urade, H. Sawa, Y. Iwatani, T. Abe, R. Fujinaka, K. Murata, et al., Laparoscopic anatomical liver resection using indocyanine green fluorescence imaging, Asian J. Surg., 43 (2020), 362–368. https://doi.org/10.1016/j.asjsur.2019.04.008 doi: 10.1016/j.asjsur.2019.04.008 |
[14] | T. Aoki, T. Koizumi, D. A. Mansour, A. Fujimori, T. Kusano, K. Matsuda, et al., Ultrasound-guided preoperative positive percutaneous indocyanine green fluorescence staining for laparoscopic anatomical liver resection, J. Am. Coll. Surg., 230 (2020), e7–e12. https://doi.org/10.1016/j.jamcollsurg.2019.11.004 doi: 10.1016/j.jamcollsurg.2019.11.004 |
[15] | M. V. Marino, S. Di Saverio, M. Podda, M. Gomez Ruiz, M. Gomez Fleitas, The application of indocyanine green fluorescence imaging during robotic liver resection: a case-matched study, World J. Surg., 43 (2019), 2595–2606. https://doi.org/10.1007/s00268-019-05055-2 doi: 10.1007/s00268-019-05055-2 |
[16] | H. Zou, X. Yang, Q. L. Li, Q. X. Zhou, L. Xiong, Y. Wen, A comparative study of albumin-bilirubin score with Child-Pugh score, model for end-stage liver disease score and indocyanine green R15 in predicting posthepatectomy liver failure for hepatocellular carcinoma patients, Dig. Dis., 36 (2018), 236–243. https://doi.org/10.1159/000486590 doi: 10.1159/000486590 |
[17] | K. Purich, J. T. Dang, A. Poonja, W. Y. Sun, D. Bigam, D. Birch, et al., Intraoperative fluorescence imaging with indocyanine green in hepatic resection for malignancy: a systematic review and meta-analysis of diagnostic test accuracy studies, Surg. Endoscopy, 34 (2020), 2891–2903. https://doi.org/10.1007/s00464-020-07543-2 doi: 10.1007/s00464-020-07543-2 |
[18] | G. Piccolo, M. Barabino, A. Pesce, M. Diana, F. Lecchi, R. Santambrogio, et al., Role of indocyanine green fluorescence imaging in minimally invasive resection of colorectal liver metastases, Surg. Laparoscopy Endoscopy Percutaneous Tech., 32 (2022), 259–265. https://doi.org/10.1097/SLE.0000000000001037 doi: 10.1097/SLE.0000000000001037 |
[19] | J. Zhou, J. Sun, W. Zhang, Z. Lin, Multi-view underwater image enhancement method via embedded fusion mechanism, Eng. Appl. Artif. Intell., 121 (2023), 105946. https://doi.org/10.1016/j.engappai.2023.105946 doi: 10.1016/j.engappai.2023.105946 |
[20] | D. K. Kim, J. I. Choi, M. H. Choi, M. Y. Park, Y. J. Lee, S. E. Rha, et al., Prediction of posthepatectomy liver failure: MRI with hepatocyte-specific contrast agent versus indocyanine green clearance test, Am. J. Roentgenol., 211 (2018), 580–587. https://doi.org/10.2214/AJR.17.19206 doi: 10.2214/AJR.17.19206 |
[21] | J. L. Petrick, K. A. McGlynn, The changing epidemiology of primary liver cancer, Curr. Epidemiol. Rep., 6 (2019), 104–111. https://doi.org/10.1007/s40471-019-00188-3 doi: 10.1007/s40471-019-00188-3 |
[22] | Z. Liu, Y. Jiang, H. Yuan, Q. Fang, N. Cai, C. Suo, et al., The trends in incidence of primary liver cancer caused by specific etiologies: results from the Global Burden of Disease Study 2016 and implications for liver cancer prevention, J. Hepatol., 70 (2019), 674–683. https://doi.org/10.1016/j.jhep.2018.12.001 doi: 10.1016/j.jhep.2018.12.001 |
[23] | J. Zhou, H. C. Sun, Z. Wang, W. M. Cong, J. H. Wang, M. S. Zeng, et al., Guidelines for diagnosis and treatment of primary liver cancer in China (2017 Edition), Liver Cancer, 7 (2018), 235–260. https://doi.org/10.1159/000488035 doi: 10.1159/000488035 |
[24] | M. Kudo, K. H. Han, S. L. Ye, J. Zhou, Y. H. Huang, S. M. Lin, et al., A changing paradigm for the treatment of intermediate-stage hepatocellular carcinoma: Asia-Pacific primary liver cancer expert consensus statements, Liver Cancer, 9 (2020), 245–260. https://doi.org/10.1159/000507370 doi: 10.1159/000507370 |
[25] | Y. X. Gao, T. W. Yang, J. M. Yin, P. X. Yang, B. X. Kou, M. Y. Chai, et al., Progress and prospects of biomarkers in primary liver cancer, Int. J. Oncol., 57 (2020), 54–66. https://doi.org/10.3892/ijo.2020.5035 doi: 10.3892/ijo.2020.5035 |
[26] | R. Sharma, Descriptive epidemiology of incidence and mortality of primary liver cancer in 185 countries: evidence from GLOBOCAN 2018, Jpn. J. Clin. Oncol., 50 (2020), 1370–1379. https://doi.org/10.1093/jjco/hyaa130 doi: 10.1093/jjco/hyaa130 |