Research article

Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response


  • Received: 08 April 2023 Revised: 26 May 2023 Accepted: 09 June 2023 Published: 15 June 2023
  • Since certain prey hide from predators to protect themselves within their habitats, predators are forced to change their diet due to a lack of prey for consumption, or on the contrary, subsist only with alternative food provided by the environment. Therefore, in this paper, we propose and mathematically contrast a predator-prey, where alternative food for predators is either considered or not when the prey population size is above the refuge threshold size. Since the model with no alternative food for predators has a Hopf bifurcation and a transcritical bifurcation, in addition to a stable limit cycle surrounding the unique interior equilibrium, such bifurcation cases are transferred to the model when considering alternative food for predators when the prey size is above the refuge. However, such a model has two saddle-node bifurcations and a homoclinic bifurcation, characterized by a homoclinic curve surrounding one of the three interior equilibrium points of the model.

    Citation: Christian Cortés García, Jasmidt Vera Cuenca. Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13681-13703. doi: 10.3934/mbe.2023610

    Related Papers:

  • Since certain prey hide from predators to protect themselves within their habitats, predators are forced to change their diet due to a lack of prey for consumption, or on the contrary, subsist only with alternative food provided by the environment. Therefore, in this paper, we propose and mathematically contrast a predator-prey, where alternative food for predators is either considered or not when the prey population size is above the refuge threshold size. Since the model with no alternative food for predators has a Hopf bifurcation and a transcritical bifurcation, in addition to a stable limit cycle surrounding the unique interior equilibrium, such bifurcation cases are transferred to the model when considering alternative food for predators when the prey size is above the refuge. However, such a model has two saddle-node bifurcations and a homoclinic bifurcation, characterized by a homoclinic curve surrounding one of the three interior equilibrium points of the model.



    加载中


    [1] E. González-Olivares, J. Mena-Lorca, Rojas-Palma A., J. Flores, Dynamical complexities in the Leslie-Gower predator–prey model as consequences of the Allee effect on prey, Appl. Math. Modell., 35 (2011), 366–381. https://doi.org/10.1016/j.apm.2010.07.001 doi: 10.1016/j.apm.2010.07.001
    [2] J. Song, Y. Xia, Y. Bai, Y. Cai, D. O'Regan, A non-autonomous Leslie–Gower model with Holling type Ⅳ functional response and harvesting complexity, Adv. Differ. Equations, 2019 (2019), 1–12. https://doi.org/10.1186/s13662-019-2203-4 doi: 10.1186/s13662-019-2203-4
    [3] O. Lin, C. Liu, X. Xie, Y. Xue, Global attractivity of Leslie–Gower predator-prey model incorporating prey cannibalism, Adv. Differ. Equations, 2020 (2020), 1–15. https://doi.org/10.1186/s13662-020-02609-w doi: 10.1186/s13662-020-02609-w
    [4] C. Arancibia–Ibarra, J. Flores, Dynamics of a Leslie–Gower predator–prey model with Holling type Ⅱ functional response, Allee effect and a generalist predator, Math. Comput. Simul., 188 (2021), 1–22. https://doi.org/10.1016/j.matcom.2021.03.035 doi: 10.1016/j.matcom.2021.03.035
    [5] E. Rahmi, I. Darti, A. Suryanto, A modified Leslie–Gower Model incorporating Beddington–DeAngelis functional response, Double Allee effect and memory effect, Fractal Fractional, 5 (2021), 84. https://doi.org/10.3390/fractalfract5030084 doi: 10.3390/fractalfract5030084
    [6] R. Yang, C. Nie, D. Jin, Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat complexity, Nonlinear Dyn., 110 (2022), 879–900. https://doi.org/10.1007/s11071-022-07625-x doi: 10.1007/s11071-022-07625-x
    [7] R. Yang, F. Wang, D. Jin, Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator–prey system with additional food, Math. Methods Appl. Sci., 45 (2022), 9967–9978. https://doi.org/10.1002/mma.8349 doi: 10.1002/mma.8349
    [8] R. Yang, X. Zhao, Y. An, Dynamical analysis of a delayed diffusive predator–prey model with additional food provided and anti-predator behavior, Mathematics, 10 (2022), 469. https://doi.org/10.3390/math10030469 doi: 10.3390/math10030469
    [9] R. Yang, Q. Song, Y. An, Spatiotemporal dynamics in a predator–prey model with functional response increasing in both predator and prey densities, Mathematics, 10 (2022), 17. https://doi.org/10.3390/math10010017 doi: 10.3390/math10010017
    [10] R. Yang, D. Jin, W. Wang, A diffusive predator-prey model with generalist predator and time delay, Aims Math., 7 (2022), 4574–4591. https://doi.org/10.3934/math.2022255 doi: 10.3934/math.2022255
    [11] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
    [12] R. Etoua, C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type Ⅲ, J. Differ. Equations, 249 (2010), 2316–2356. https://doi.org/10.1016/j.jde.2010.06.021 doi: 10.1016/j.jde.2010.06.021
    [13] E. González-Olivares, A. Rojas-Palma, Multiple limit cycles in a Gause type predator–prey model with Holling type Ⅲ functional response and Allee effect on prey, Bull. Math. Biol., 73 (2011), 1378–1397. https://doi.org/10.1007/s11538-010-9577-5 doi: 10.1007/s11538-010-9577-5
    [14] G. Seo, D. DeAngelis, A predator–prey model with a Holling type Ⅰ functional response including a predator mutual interference, J. Nonlinear Sci., 21 (2011), 811–833. https://doi.org/10.1007/s00332-011-9101-6 doi: 10.1007/s00332-011-9101-6
    [15] K. Antwi-Fordjour, R. Parshad, M. Beauregard, Dynamics of a predator–prey model with generalized Holling type functional response and mutual interference, Math. Biosci., 326 (2020), 108407. https://doi.org/10.1016/j.mbs.2020.108407 doi: 10.1016/j.mbs.2020.108407
    [16] A. Arsie, C. Kottegoda, C. Shan, A predator-prey system with generalized Holling type Ⅳ functional response and Allee effects in prey, J. Differ. Equations, 309 (2022), 704–740. https://doi.org/10.1016/j.jde.2021.11.041 doi: 10.1016/j.jde.2021.11.041
    [17] Yusrianto, S. Toaha, Kasbawati, Stability analysis of prey predator model with Holling Ⅱ functional response and threshold harvesting for the predator, J. Phys. Confer. Ser., 1341 (2019), 062025. https://doi.org/10.1088/1742-6596/1341/6/062025 doi: 10.1088/1742-6596/1341/6/062025
    [18] N. Stollenwerk, M. Aguiar, B. W. Kooi, Modelling Holling type Ⅱ functional response in deterministic and stochastic food chain models with mass conservation, Ecol. Complex., 49 (2022), 100982. https://doi.org/10.1016/j.ecocom.2022.100982 doi: 10.1016/j.ecocom.2022.100982
    [19] W. Cintra, C. A. dos Santos, J. Zhou, Coexistence states of a Holling type Ⅱ predator-prey system with self and cross-diffusion terms, Discrete Contin. Dyn. Syst. B, 27 (2022), 3913. https://doi.org/10.3934/dcdsb.2021211 doi: 10.3934/dcdsb.2021211
    [20] N. Zhang, F. Chen, Q. Su, T. Wu, Dynamic behaviors of a harvesting Leslie-Gower predator-prey model, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1155/2011/473949 doi: 10.1155/2011/473949
    [21] C. Cortés García, Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density, Math. Biosci. Eng., 19 (2022), 14029–14055. https://doi.org/10.3934/mbe.2022653 doi: 10.3934/mbe.2022653
    [22] E. González-Olivares, P. Tintinago-Ruiz, A. Rojas-Palma, A Leslie–Gower-type predator–prey model with sigmoid functional response, Int. J. Comput. Math., 92 (2015), 1895–1909. https://doi.org/10.1080/00207160.2014.889818 doi: 10.1080/00207160.2014.889818
    [23] Y. Dai, Y. Zhao, B. Sang, Four limit cycles in a predator–prey system of Leslie type with generalized Holling type Ⅲ functional response, Nonlinear Anal. Real World Appl., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003
    [24] C. Arancibia-Ibarra, J. Flores, J. D. P. van Heijster, Stability analysis of a modified Leslie–Gower predation model with weak Allee effect in the prey, Front. Appl. Math. Stat., 7 (2022), 90. https://doi.org/10.3389/fams.2021.731038 doi: 10.3389/fams.2021.731038
    [25] C. Cortes Garcia, Bifurcations on a discontinuous Leslie–Grower model with harvesting and alternative food for predators and Holling Ⅱ functional response, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106800. https://doi.org/10.1016/j.cnsns.2022.106800 doi: 10.1016/j.cnsns.2022.106800
    [26] C. Cortes Garcia, Impact of prey refuge in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and linear functional response, Math. Comput. Simul., 206 (2023), 147–165. https://doi.org/10.1016/j.matcom.2022.11.013 doi: 10.1016/j.matcom.2022.11.013
    [27] J. Olarte García, A. Loaiza, Un modelo de crecimiento poblacional De Aedes ægypti con capacidad de carga Logística, Rev. Mat. Teor. Apl., 25 (2018), 79–113. https://doi.org/10.15517/rmta.v1i25.32233 doi: 10.15517/rmta.v1i25.32233
    [28] C. Cortés-García, Bifurcations in discontinuous mathematical models with control strategy for a species, Math. Biosci. Eng., 19 (2022), 1536–1558. https://doi.org/10.3934/mbe.2022071 doi: 10.3934/mbe.2022071
    [29] G. Tang, S. Tang, R. Cheke, Global analysis of a Holling type Ⅱ predator–prey model with a constant prey refuge, Nonlinear Dyn., 76 (2014), 635–647. https://doi.org/10.1007/s11071-013-1157-4 doi: 10.1007/s11071-013-1157-4
    [30] D. Jana, R. Agrawal, U. Ranjit Kumar, Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge, Appl. Math. Comput., 268 (2015), 1072–1094. https://doi.org/10.1016/j.amc.2015.06.098 doi: 10.1016/j.amc.2015.06.098
    [31] S. Chen, W. Li, Z. Ma, Analysis on a modified Leslie-Gower and holling-type Ⅱ predator-prey system incorporating a prey refuge and time delay, Dyn. Syst. Appl., 27 (2018), 397–421. https://doi.org/10.12732/dsa.v27i2.12 doi: 10.12732/dsa.v27i2.12
    [32] H. Molla, S. Sarwardi, M. Haque, Dynamics of adding variable prey refuge and an Allee effect to a predator–prey model, Alexandria Eng. J., 61 (2022), 4175–4188. https://doi.org/10.1016/j.aej.2021.09.039 doi: 10.1016/j.aej.2021.09.039
    [33] V. Křivan, Optimal foraging and predator–prey dynamics, Theor. Popul. Biol., 49 (1996), 265–290. https://doi.org/10.1006/tpbi.1996.0014 doi: 10.1006/tpbi.1996.0014
    [34] B. Ma, P. Abrams, C. E. Brassil, Dynamic versus instantaneous models of diet choice, Am. Natl., 162 (2003), 668–684. https://doi.org/10.1086/378783 doi: 10.1086/378783
    [35] V. Křivan, Behavioral refuges and predator–prey coexistence, J. Theor. Biol., 339 (2013), 112–121. https://doi.org/10.1016/j.jtbi.2012.12.016 doi: 10.1016/j.jtbi.2012.12.016
    [36] Y. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcation Chaos, 13 (2003), 2157–2188. https://doi.org/0.1142/S0218127403007874
    [37] M. Guardia, T. M. Seara, M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Differ. Equations, 250 (2011), 1967–2023. https://doi.org/10.1016/j.jde.2010.11.016 doi: 10.1016/j.jde.2010.11.016
    [38] C. Cortés García, Bifurcaciones en modelo gause depredador-presa con discontinuidad, Rev. Mat. Teor. Apl., 28 (2021), 183–208. https://doi.org/10.15517/rmta.v28i2.36084 doi: 10.15517/rmta.v28i2.36084
    [39] C. Cortés García, J. Hernandez, Population dynamics with protection and harvesting of a species, Rev. Colomb. Mat., 56 (2022), 113–131. https://doi.org/10.15446/recolma.v56n2.108369 doi: 10.15446/recolma.v56n2.108369
    [40] C. Chicone, Ordinary Differential Equations with Applications, Springer Science & Business Media, 2006.
    [41] C. Pugh, A generalized Poincaré index formula, Topology, 7 (1968), 217–226. https://doi.org/10.1016/0040-9383(68)90002-5 doi: 10.1016/0040-9383(68)90002-5
    [42] J. Llibre, J. Villadelprat, A Poincaré index formula for surfaces with boundary, Differ. Integr. Equations, 11 (1998), 191–199. https://doi.org/10.57262/die/1367414143 doi: 10.57262/die/1367414143
    [43] C. Cortés García, Identificación de una Bifurcación de Hopf con o sin Parámetros, Rev. Cienc., 21 (2017), 59–82. https://doi.org/10.25100/rc.v21i2.6699 doi: 10.25100/rc.v21i2.6699
    [44] B. Pirayesh, A. Pazirandeh, M. Akbari, Local bifurcation analysis in nuclear reactor dynamics by Sotomayor's theorem, Ann. Nuclear Energy, 94 (2016), 716–731. https://doi.org/10.1016/j.anucene.2016.04.021 doi: 10.1016/j.anucene.2016.04.021
    [45] F. Dercole, Y. Kuznetsov, SlideCont: An Auto97 driver for bifurcation analysis of Filippov systems, ACM Trans. Math. Software, 31 (2005), 95–119. https://doi.org/10.1145/1055531.1055536 doi: 10.1145/1055531.1055536
    [46] C. Cortés García, Estudo da descontinuidade para um modelo populacional, Universidade Federal de Minas Gerais, (2016). Available from: https://repositorio.ufmg.br/handle/1843/EABA-ADAK3Y.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1519) PDF downloads(155) Cited by(3)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog