Stability of steady state solutions associated with initial and boundary value problems of a coupled fluid-reaction-diffusion system in one space dimension is analyzed. It is shown that under Dirichlet-Dirichlet type boundary conditions, non-trivial steady state solutions exist and are locally stable when the system parameters satisfy certain constraints.
Citation: Hongyun Peng, Kun Zhao. On a hyperbolic-parabolic chemotaxis system[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 7802-7827. doi: 10.3934/mbe.2023337
Stability of steady state solutions associated with initial and boundary value problems of a coupled fluid-reaction-diffusion system in one space dimension is analyzed. It is shown that under Dirichlet-Dirichlet type boundary conditions, non-trivial steady state solutions exist and are locally stable when the system parameters satisfy certain constraints.
[1] | J. D. Murray, Mathematical biology I: An introduction. vol. 17 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, third ed., 2002. https://link.springer.com/book/10.1007/b98868 |
[2] | S. G. Li, K. Muneoka, Cell migration and chick limb development: chemotactic action of FGF-4 and the AER, Dev. Biol., 211 (1999), 335–347. https://doi.org/10.1006/dbio.1999.9317 doi: 10.1006/dbio.1999.9317 |
[3] | P. Carmeliet, Mechanisms of angiogenesis and arteriogenesis, Nat. Med., 6 (2000), 389–395. https://doi.org/10.1038/74651 doi: 10.1038/74651 |
[4] | G. Helmlinger, M. Endo, N. Ferrara, L. Hlatky, R. Jain, Formation of endothelial cell networks, Nature, 405 (2000), 139–141. https://doi.org/10.1038/35012132 doi: 10.1038/35012132 |
[5] | A. Gamba, D. Ambrosi, A. Coniglio, A de Candia, S. Di Talia, E. Giraudo, et al., Percolation, morphogenesis, and Burgers dynamics in blood vessels formation, Phys. Rev. Lett., 90 (2003), 118101–118104. https://doi.org/10.1103/PhysRevLett.90.118101 doi: 10.1103/PhysRevLett.90.118101 |
[6] | D. Ambrosi, F. Bussolino, L. Preziosi, A review of vasculogenesis models, J. Theoret. Med., 6 (2005), 1–19. https://doi.org/10.1080/1027366042000327098 doi: 10.1080/1027366042000327098 |
[7] | H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 |
[8] | P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst.-Ser. B, 18 (2013), 2597-2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597 |
[9] | Z. A. Wang, Z. Xiang, P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equ., 260 (2016), 2225–2258. https://doi.org/10.1016/j.jde.2015.09.063 doi: 10.1016/j.jde.2015.09.063 |
[10] | P. H. Chavanis, C. Sire, Kinetic and hydrodynamic models of chemotactic aggregation, Physica A, 384 (2007), 199–222. https://doi.org/10.1016/j.physa.2007.05.069 doi: 10.1016/j.physa.2007.05.069 |
[11] | M. Di Francesco, D. Donatelli, Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 79–100. https://doi.org/10.3934/dcdsb.2010.13.79 doi: 10.3934/dcdsb.2010.13.79 |
[12] | R. Natalini, M. Ribot, M. Twarogowska, A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis, J. Sci. Comput., 63 (2015), 654–677. https://doi.org/10.1007/s10915-014-9909-y doi: 10.1007/s10915-014-9909-y |
[13] | R. Kowalczyk, A. Gamba, L. Preziosi, On the stability of homogeneous solutions to some aggregation models, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 203–220. https://doi.org/10.3934/DCDSB.2004.4.203 doi: 10.3934/DCDSB.2004.4.203 |
[14] | C. Di Russo, Analysis and numerical approximations of hydrodynamical models of biological movements, Rend. Mat. Appl., 32 (2012), 117–367. http://hdl.handle.net/2307/4247 |
[15] | C. Di Russo, A. Sepe, Existence and asymptotic behavior of solutions to a quasi-linear hyperbolic-parabolic model of vasculogenesis, SIAM J. Math. Anal., 45 (2013), 748–776. https://doi.org/10.1137/110858896 doi: 10.1137/110858896 |
[16] | Q. Q. Liu, H. Y. Peng, Z. A. Wang, Asymptotic stability of diffusion waves of a quasi-linear hyperbolic-parabolic model for vasculogenesis, SIAM J. Math. Anal., 54 (2022), 1313–1346. https://doi.org/10.1137/21M1418150 doi: 10.1137/21M1418150 |
[17] | Q. Q. Liu, H. Y. Peng, Z. A. Wang, Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis, J. Differ. Equ., 314 (2022), 251–286. https://doi.org/10.1016/j.jde.2022.01.021 doi: 10.1016/j.jde.2022.01.021 |
[18] | T. Crin-Barat, Q. Y. He, L. Y. Shou, The hyperbolic-parabolic chemotaxis system modelling vasculogenesis: global dynamics and relaxation limit, arXive, (2022), arXiv: 2201.06512v1. https://doi.org/10.48550/arXiv.2201.06512 |
[19] | F. Berthelin, D. Chiron, M. Ribot, Stationary solutions with vacuum for a one-dimensional chemotaxis model with nonlinear pressure, Commun. Math. Sci., 14 (2016), 147–186. https://doi.org/10.4310/CMS.2016.v14.n1.a6 doi: 10.4310/CMS.2016.v14.n1.a6 |
[20] | J. Carrillo, X. Chen, Q. Wang, Z. Wang, L. Zhang, Phase transitions and bump solutions of the Keller-Segel model with volume exclusion, SIAM J. Appl. Math., 80 (2020), 232–261. https://doi.org/10.1137/19M125827 doi: 10.1137/19M125827 |
[21] | G. Y. Hong, H. Y. Peng, Z. A. Wang, C. J. Zhu, Nonlinear stability of phase transition steady states to a hyperbolic–parabolic system modeling vascular networks, J. London Math. Soc., 103 (2021), 1480–1514. https://doi.org/10.1112/jlms.12415 doi: 10.1112/jlms.12415 |
[22] | R. H. Pan, K. Zhao, The 3D compressible Euler equations with damping in a bounded domain, J. Differ. Equ., 246 (2009), 581–596. https://doi.org/10.1016/j.jde.2008.06.007 doi: 10.1016/j.jde.2008.06.007 |
[23] | S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49–75. https://link.springer.com/article/10.1007/BF01210792 |