Research article

Sliding mode dynamics and optimal control for HIV model


  • Received: 07 November 2022 Revised: 12 January 2023 Accepted: 30 January 2023 Published: 13 February 2023
  • Considering the drug treatment strategy in both virus-to-cell and cell-to-cell transmissions, this paper presents an HIV model with Filippov control. Given the threshold level $ N_t $, when the total number of infected cells is less or greater than threshold level $ N_t $, the threshold dynamics of the model are studied by using the Routh-Hurwitz Criterion. When the total number of infected cells is equal to $ N_t $, the sliding mode equations are obtained by Utkin equivalent control method, and the dynamics are studied. In addition, the optimal control strategy is introduced for the case that the number of infected cells is greater than $ N_t $. By dynamic programming, the Hamilton-Jacobi-Bellman (HJB) equation is constructed, and the optimal control is obtained. Numerical simulations are presented to illustrate the validity of our results.

    Citation: Dan Shi, Shuo Ma, Qimin Zhang. Sliding mode dynamics and optimal control for HIV model[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 7273-7297. doi: 10.3934/mbe.2023315

    Related Papers:

  • Considering the drug treatment strategy in both virus-to-cell and cell-to-cell transmissions, this paper presents an HIV model with Filippov control. Given the threshold level $ N_t $, when the total number of infected cells is less or greater than threshold level $ N_t $, the threshold dynamics of the model are studied by using the Routh-Hurwitz Criterion. When the total number of infected cells is equal to $ N_t $, the sliding mode equations are obtained by Utkin equivalent control method, and the dynamics are studied. In addition, the optimal control strategy is introduced for the case that the number of infected cells is greater than $ N_t $. By dynamic programming, the Hamilton-Jacobi-Bellman (HJB) equation is constructed, and the optimal control is obtained. Numerical simulations are presented to illustrate the validity of our results.



    加载中


    [1] D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, M. Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, shape Nature, 373 (1995), 123–126. https://doi.org/10.1038/373123a0 doi: 10.1038/373123a0
    [2] T. Doyle, A. M. Geretti, Low-level viraemia on HAART: significance and management, shape Curr. Opin. Infect. Dis., 25 (2012), 17–25. https://doi.org/10.1097/qco.0b013e32834ef5d9 doi: 10.1097/qco.0b013e32834ef5d9
    [3] S. Wain-Hobson, Virus dynamics: mathematical principles of immunology and virology, shape Nat. Med., 7 (2001), 525–526. https://doi.org/10.1038/87836 doi: 10.1038/87836
    [4] D. M. Cardo, D. H. Culver, C. A. Ciesielski, P. U. Srivatava, R. Marcus, D. Abiteboul, et al., A case-control study of HIV seroconversion in health care workers after percutaneous exposure, shape N. Engl. J. Med., 337 (1997), 1485–1490. https://doi.org/10.1056/NEJM199711203372101 doi: 10.1056/NEJM199711203372101
    [5] N. K. Vaidya, L. Rong, Modeling pharmacodynamics and hiv latent infection: choice of drugs is key to successful cure via early therapy, shape SIAM J. Appl. Math, 77 (2017), 1781–1804. https://doi.org/10.1137/16m1092003 doi: 10.1137/16m1092003
    [6] P. K. Roy, shape Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission, Springer, 2015. https://doi.org/10.1007/978-981-287-852-6
    [7] P. Yan, Impulsive SUI epidemic model for HIV/AIDS with chronological age and infection age, shape J. Theor. Biol., 265 (2010), 177–184. https://doi.org/10.1016/j.jtbi.2010.04.011 doi: 10.1016/j.jtbi.2010.04.011
    [8] S. B. Chibaya, F. Nyabadza, Mathematical modelling of the potential role of supplementary feeding for people living with HIV/AIDS, shape Int. J. Appl. Comput. Math., 5 (2019), 1–20. https://doi.org/10.1007/s40819-019-0660-9 doi: 10.1007/s40819-019-0660-9
    [9] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, shape Science, 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582 doi: 10.1126/science.271.5255.1582
    [10] L. Cai, X. Li, M. Ghosh, B. Guo, Stability analysis of an HIV/AIDS epidemic model with treatment, shape J. Comput. Appl. Math., 229 (2009), 313–323. https://doi.org/10.1016/j.cam.2008.10.067 doi: 10.1016/j.cam.2008.10.067
    [11] L. M. Agosto, P. D. Uchil, W. Mothes, HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy, shape Trends Microbiol., 23 (2015), 289–295. https://doi.org/10.1016/j.tim.2015.02.003 doi: 10.1016/j.tim.2015.02.003
    [12] J. Wang, J. Lang, X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, shape Nonlinear Anal. Real World Appl., 34 (2017), 75–96. https://doi.org/10.1016/j.nonrwa.2016.08.001 doi: 10.1016/j.nonrwa.2016.08.001
    [13] W. H$\ddot{u}$ebner, G. P. Mcnemey, M. Nerney, P. Chen, B. M. Dale, R. E. Gordon, et al., Quantitative 3D video microscopy of HIV transfer across T cell virological synapses, shape Science, 323 (2009), 1743–1747. https://doi.org/10.1126/science.1167525 doi: 10.1126/science.1167525
    [14] Q. Sattentau, Avoiding the void: Cell-to-cell spread of human viruses, shape Nat. Rev. Microbiol., 6 (2008), 815–826. https://doi.org/10.1038/nrmicro1972 doi: 10.1038/nrmicro1972
    [15] P. Zhong, L. M. Agosto, J. B. Munro, W. Mothes, Cell-to-cell transmission of viruses, shape Curr. Opin. Virol., 3 (2013), 44–50. https://doi.org/10.1016/j.coviro.2012.11.004 doi: 10.1016/j.coviro.2012.11.004
    [16] X. Wang, S. Tang, X. Song, L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, shape J. Biol. Dyn., 11 (2017), 455–483. https://doi.org/10.1080/17513758.2016.1242784 doi: 10.1080/17513758.2016.1242784
    [17] M. Dhar, S. Samaddar, P. Bhattacharya, Modeling the cell-to-cell transmission dynamics of viral infection under the exposure of non-cytolytic cure, shape J. Appl. Math. Comput., 65 (2021), 885–911. https://doi.org/10.1007/s12190-020-01420-w doi: 10.1007/s12190-020-01420-w
    [18] N. M. Dixit, A. S. Perelson, Multiplicity of human immunodeficiency virus infections in lymphoid tissue, shape J. Virol., 78 (2004), 8942–8945. https://doi.org/10.1128/jvi.78.16.8942-8945.2004 doi: 10.1128/jvi.78.16.8942-8945.2004
    [19] X. Lai, X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, shape SIAM J. Appl. Math., 74 (2014), 898–917. https://doi.org/10.1137/130930145 doi: 10.1137/130930145
    [20] N. M. Dixit, A. S. Perelson, HIV dynamics with multiple infections of target cells, shape Biophys. Comput. Biol., 102 (2005), 8198–8203. https://doi.org/10.1073/pnas.0407498102 doi: 10.1073/pnas.0407498102
    [21] J. J. Kutch, P. Gurfil, Optimal control of HIV infection with a continuously-mutating viral population, in shape Proceedings of the 2002 American Control Conference, 5 (2002), 4033–4038. https://doi.org/10.1109/acc.2002.1024560
    [22] Y. Liu, X. Lin, J. Li, Analysis and control of a delayed HIV infection model with cell-to-cell transmission and cytotoxic T lymphocyte immune response, shape Math. Methods Appl. Sci., 44 (2021), 5767–5786. https://doi.org/10.1002/mma.7147 doi: 10.1002/mma.7147
    [23] N. Akbari, R. Asheghi, Optimal control of an HIV infection model with logistic growth, celluar and homural immune response, cure rate and cell-to-cell spread, shape Boundary Value Probl., 2022 (2022), 1–12. https://doi.org/10.1186/s13661-022-01586-1 doi: 10.1186/s13661-022-01586-1
    [24] W. Guo, Q. Zhang, X. Li, M. Ye, Finite-time stability and optimal impulsive control for age-structured HIV model with time-varying delay and L$\acute{e}$vy noise, shape Nonlinear Dyn., 106 (2021), 3669–3696. https://doi.org/10.1007/s11071-021-06974-3 doi: 10.1007/s11071-021-06974-3
    [25] E. Moulay, V. L$\acute{e}$chapp$\acute{e}$, E. Bernuau, M. Defoort, F. Plestan, Fixed-time sliding mode control with mismatched disturbances, shape Automatica, 136 (2022), 110009. https://doi.org/10.1016/j.automatica.2021.110009 doi: 10.1016/j.automatica.2021.110009
    [26] G. Yan, Design of adaptive sliding mode controller applied to ultrasonic motor, shape Assem. Autom., 42 (2022), 147–154. https://doi.org/10.1108/aa-04-2021-0048 doi: 10.1108/aa-04-2021-0048
    [27] L. Shen, S. A. Rabi, A. R. Sedaghat, L. Shan, J. Lai, S. Xing, et al., A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs, shape Sci. Transl. Med., 3 (2011), 63–91. https://doi.org/10.1126/scitranslmed.3002304 doi: 10.1126/scitranslmed.3002304
    [28] J. Lou, Y. Lou, J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects, shape J. Math. Biol., 65 (2012), 623–652. https://doi.org/10.1007/s00285-011-0474-9 doi: 10.1007/s00285-011-0474-9
    [29] S. Chibaya, M. Kgosimore, E. S. Massawe, Mathematical analysis of drug resistance in vertical transmission of HIV/AIDS, shape Open J. Epidemiol., 3 (2013), 139–148. https://doi.org/10.4236/ojepi.2013.33021 doi: 10.4236/ojepi.2013.33021
    [30] R. Mu, A. Wei, Y. Yang, Global dynamics and sliding motion in A(H7N9) epidemic models with limited resources and Filippov control, shape J. Math. Anal. Appl., 477 (2019), 1297–1317. https://doi.org/10.1016/j.jmaa.2019.05.013 doi: 10.1016/j.jmaa.2019.05.013
    [31] V. L. Utikin, J. Guldner, J. Shi, shape Sliding Mode Control in Electro-Mechanical Systems, CRC Press, 2009. https://doi.org/10.1201/9781420065619
    [32] J. Yong, X. Zhou, shape Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, 1999. https://doi.org/10.1109/TAC.2001.964706
    [33] C. Xu, W. Zhang, Z. Liu, L. Yao, Delay-induced periodic oscillation for fractional-order neural networks with mixed delays, shape Neurocomputing, 488 (2022), 681–693. https://doi.org/10.1016/j.neucom.2021.11.079 doi: 10.1016/j.neucom.2021.11.079
    [34] C. Xu, D. Mu, Z. Liu, Y, Pang, M. Liao, P. Li, et al., Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks, shape Nonlinear Anal. Modell. Control, 27 (2022), 1–24. https://doi.org/10.15388/namc.2022.27.28491 doi: 10.15388/namc.2022.27.28491
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1296) PDF downloads(84) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog