Research article Special Issues

Linear barycentric rational collocation method for solving generalized Poisson equations


  • Received: 29 November 2022 Revised: 19 December 2022 Accepted: 21 December 2022 Published: 03 January 2023
  • We consider the Poisson equation by collocation method with linear barycentric rational function. The discrete form of the Poisson equation was changed to matrix form. For the basis of barycentric rational function, we present the convergence rate of the linear barycentric rational collocation method for the Poisson equation. Domain decomposition method of the barycentric rational collocation method (BRCM) is also presented. Several numerical examples are provided to validate the algorithm.

    Citation: Jin Li, Yongling Cheng, Zongcheng Li, Zhikang Tian. Linear barycentric rational collocation method for solving generalized Poisson equations[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4782-4797. doi: 10.3934/mbe.2023221

    Related Papers:

  • We consider the Poisson equation by collocation method with linear barycentric rational function. The discrete form of the Poisson equation was changed to matrix form. For the basis of barycentric rational function, we present the convergence rate of the linear barycentric rational collocation method for the Poisson equation. Domain decomposition method of the barycentric rational collocation method (BRCM) is also presented. Several numerical examples are provided to validate the algorithm.



    加载中


    [1] Dell' Accio, F. Di Tommaso, O. Nouisser, N. Siar, Solving Poisson equation with Dirichlet conditions through multinode Shepard operators, Comput. Math. Appl., 98 (2021), 254–260. https://doi.org/10.1016/j.camwa.2021.07.021 doi: 10.1016/j.camwa.2021.07.021
    [2] F. DellAccio, F. Di Tommaso, G. Ala, E. Francomano, Electric scalar potential estimations for non-invasive brain activity detection through multinode Shepard method, in 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), (2022), 1264–1268. https://doi.org/10.1109/MELECON53508.2022.9842881
    [3] M. Floater, H. Kai, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
    [4] G. Klein, J. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156
    [5] G. Klein, J. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x
    [6] R. Baltensperger, J. P. Berrut, The linear rational collocation method, J. Comput. Appl. Math., 134 (2001), 243–258. https://doi.org/10.1016/S0377-0427(00)00552-5 doi: 10.1016/S0377-0427(00)00552-5
    [7] S. Li, Z. Wang, High Precision Meshless barycentric Interpolation Collocation Method–Algorithmic Program and Engineering Application, Science Publishing, Beijing, 2012.
    [8] Z. Wang, S. Li, Barycentric Interpolation Collocation Method for Nonlinear Problems, National Defense Industry Press, Beijing, 2015.
    [9] Z. Wang, Z. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201. https://doi.org/1000-4939(2018)03-0631-06
    [10] Z. Wang, L. Zhang, Z. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309. https://doi.org/10.11776/cjam.35.02.D002 doi: 10.11776/cjam.35.02.D002
    [11] W. H. Luo, T. Z. Huang, X. M. Gu, Y. Liu, Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett., 68 (2017), 13–19. https://doi.org/10.1016/j.aml.2016.12.011 doi: 10.1016/j.aml.2016.12.011
    [12] J. Li, Linear barycentric rational collocation method for solving biharmonic equation, Demonstr. Math., 55 (2022), 587–603. https://doi.org/10.1515/dema-2022-0151 doi: 10.1515/dema-2022-0151
    [13] J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
    [14] J. Li, X. Su, J. Qu, Linear barycentric rational collocation method for solving telegraph equation. Math. Methods Appl. Sci., 44 (2021), 11720–11737. https://doi.org/10.1002/mma.7548
    [15] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-1114-z
    [16] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equations, 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
    [17] K. Jing, N. Kang, A convergent family of bivariate Floater-Hormann rational interpolants, Comput. Methods Funct. Theory, 21 (2021), 271–296. https://doi.org/10.1007/s40315-020-00334-9 doi: 10.1007/s40315-020-00334-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1486) PDF downloads(74) Cited by(8)

Article outline

Figures and Tables

Figures(7)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog