Research article

Emotion recognition of EEG signals based on variational mode decomposition and weighted cascade forest

  • Academic editor: Hamidreza Namazi
  • Received: 06 September 2022 Revised: 27 October 2022 Accepted: 31 October 2022 Published: 24 November 2022
  • Emotion recognition is of a great significance in intelligent medical treatment and intelligent transportation. With the development of human-computer interaction technology, emotion recognition based on Electroencephalogram (EEG) signals has been widely concerned by scholars. In this study, an EEG emotion recognition framework is proposed. Firstly, variational mode decomposition (VMD) is used to decompose the nonlinear and non-stationary EEG signals to obtain intrinsic mode functions (IMFs) at different frequencies. Then sliding window tactic is used to extract the characteristics of EEG signals under different frequency. Aiming at the issue of feature redundancy, a new variable selection method is proposed to improve the adaptive elastic net (AEN) by the minimum common redundancy maximum relevance criterion. Weighted cascade forest (CF) classifier is constructed for emotion recognition. The experimental results on the public dataset DEAP show that the valence classification accuracy of the proposed method reaches 80.94%, and the classification accuracy of arousal is 74.77%. Compared with some existing methods, it effectively improves the accuracy of EEG emotion recognition.

    Citation: Dingxin Xu, Xiwen Qin, Xiaogang Dong, Xueteng Cui. Emotion recognition of EEG signals based on variational mode decomposition and weighted cascade forest[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2566-2587. doi: 10.3934/mbe.2023120

    Related Papers:

  • Emotion recognition is of a great significance in intelligent medical treatment and intelligent transportation. With the development of human-computer interaction technology, emotion recognition based on Electroencephalogram (EEG) signals has been widely concerned by scholars. In this study, an EEG emotion recognition framework is proposed. Firstly, variational mode decomposition (VMD) is used to decompose the nonlinear and non-stationary EEG signals to obtain intrinsic mode functions (IMFs) at different frequencies. Then sliding window tactic is used to extract the characteristics of EEG signals under different frequency. Aiming at the issue of feature redundancy, a new variable selection method is proposed to improve the adaptive elastic net (AEN) by the minimum common redundancy maximum relevance criterion. Weighted cascade forest (CF) classifier is constructed for emotion recognition. The experimental results on the public dataset DEAP show that the valence classification accuracy of the proposed method reaches 80.94%, and the classification accuracy of arousal is 74.77%. Compared with some existing methods, it effectively improves the accuracy of EEG emotion recognition.



    加载中


    [1] T. Chen, S. Ju, F. Ren, M. Fan, Y. Gu, EEG emotion recognition model based on the LIBSVM classifier, Measurement, 164 (2020), 108047. http://doi.org/10.1016/j.measurement.2020.108047 doi: 10.1016/j.measurement.2020.108047
    [2] G. K. P. Veeramall, Y. Anupalli, S. K. Jilumudi, A. Bhattacharyya, EEG based automatic emotion recognition using EMD and Random forest classifier, in 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), (2019), 1–6. https://doi.org/10.1109/ICCCNT45670.2019.8944903
    [3] A. Tiwari, T. H. Falk, Fusion of motif-and spectrum-related features for improved EEG-based emotion recognition, Comput. Intel. Neurosc., 2019 (2019), 3076324. https://doi.org/10.1155/2019/3076324 doi: 10.1155/2019/3076324
    [4] S. A. Hosseini, M. B. Naghibi-Sistani, Emotion recognition method using entropy analysis of EEG signals, Int. J. Image Graphics & Signal Process., 3 (2011), 30–36. https://doi.org/10.5815/ijigsp.2011.05.05 doi: 10.5815/ijigsp.2011.05.05
    [5] S. N. Daimi, G. Saha, Classification of emotions induced by music videos and correlation with participants' rating, Expert Sys. Appl., 41 (2014), 6057–6065. https://doi.org/10.1016/j.eswa.2014.03.050 doi: 10.1016/j.eswa.2014.03.050
    [6] R. M. Mehmood, H. J. Lee, Emotion recognition from EEG brain signals based on particle swarm optimization and genetic search, in 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), (2016), 1–5. https://doi.org/10.1109/ICMEW.2016.7574682
    [7] T. F. Bastos-Filho, A. Ferreir, A. C. Atencio, S. Arjunan, D. Kumar, Evaluation of feature extraction techniques in emotional state recognition, in 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI), (2012), 1–6. https://doi.org/10.1109/IHCI.2012.6481860
    [8] A. N. N. M. Yosi, K. A. Sidek, H. S. Yaaco, M. Othman, A. Z. Jusoh, Emotion recognition using electroencephalogram signal, Indones. J. Electr. Eng. Comput. Sci., 15 (2019), 786–793. https://doi.org/10.11591/ijeecs.v15.i2.pp786-793 doi: 10.11591/ijeecs.v15.i2.pp786-793
    [9] N. Zhuang, Y. Zeng, L. Tong, C. Zhang, H. Zhang, Y. Bin, Emotion recognition from EEG signals using multidimensional information in EMD domain, BioMed Res. Int., 2017 (2017), 8317357. https://doi.org/10.1155/2017/8317357 doi: 10.1155/2017/8317357
    [10] P. Ozel, A. Akan, Channel contributions of EEG in emotion modelling based on multivariate adaptive orthogonal signal decomposition, IETE J. Res., (2021), 1–12. https://doi.org/10.1080/03772063.2021.1911693
    [11] X. Li, D. Song, P. Zhang, G. Yu, Y. Hou, B. Hu, Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network, in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2016), 352–359. https://doi.org/10.1109/BIBM.2016.7822545
    [12] P. Pandey, K. R. Seeja, Subject independent emotion recognition from EEG using VMD and deep learning, J. King Saud Univ.-Comput. Inf. Sci., 34 (2022), 1730–1738. https://doi.org/10.1016/j.jksuci.2019.11.003 doi: 10.1016/j.jksuci.2019.11.003
    [13] S. Hwang, K. Hong, G. Son, H. Byun, Learning CNN features from DE features for EEG-based emotion recognition, Pattern Anal. Appl., 23 (2020), 1323–1335. https://doi.org/10.1007/s10044-019-00860-w doi: 10.1007/s10044-019-00860-w
    [14] Y. Li, B. Fu, F. Li, G. Shi, W. Zheng, A novel transferability attention neural network model for EEG emotion recognition, Neurocomputing, 447 (2021), 92–101. https://doi.org/10.1016/j.neucom.2021.02.048 doi: 10.1016/j.neucom.2021.02.048
    [15] Z. Wang, Y. Wang, C. Hu, Z. Yin, Y. Song, Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model, IEEE Sens. J., 22 (2022), 4359–4368. https://doi.org/10.1109/JSEN.2022.3144317 doi: 10.1109/JSEN.2022.3144317
    [16] J. Cheng, M. Chen, C. Li, Y. Liu, R. Song, A. P. Liu, et al., Emotion recognition from multi-channel EEG via deep forest, IEEE J. Biomed. Health Inf., 25 (2021), 453–464. https://doi.org/10.1109/JBHI.2020.2995767 doi: 10.1109/JBHI.2020.2995767
    [17] S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, et al. DEAP: A database for emotion analysis using physiological signals, IEEE Trans. Affect. Comput., 3 (2012), 18–31. https://doi.org/10.1109/T-AFFC.2011.15 doi: 10.1109/T-AFFC.2011.15
    [18] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Trans. Signal Process., 62 (2014), 531–544. https://doi.org/10.1109/TSP.2013.2288675 doi: 10.1109/TSP.2013.2288675
    [19] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. A, 454 (1998), 903–995. https://doi.org/10.1098/rspa.1998.0193 doi: 10.1098/rspa.1998.0193
    [20] H. R. A. Ghayab, Y. Li, S. Siuly, S. Abdulla, Epileptic EEG signal classification using optimum allocation based power spectral density estimation, IET Signal Process., 12 (2018), 738–747. https://doi.org/10.1049/iet-spr.2017.0140 doi: 10.1049/iet-spr.2017.0140
    [21] K. Zeng, G. Ouyang, H. Chen, Y. Gu, X. Liu, X. Li, Characterizing dynamics of absence seizure EEG with spatial-temporal permutation entropy, Neurocomputing, 275 (2018), 577–585. https://doi.org/10.1016/j.neucom.2017.09.007
    [22] R. Duan, J. Zhu, B. Lu, Differential entropy feature for EEG-based emotion classification, in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), (2013), 81–84. https://doi.org/10.1109/NER.2013.6695876
    [23] D. Chen, R. Miao, W. Yang, Y. Liang, H. Chen, L. Huang, et al., A feature extraction method based on differential entropy and linear discriminant analysis for emotion recognition, Sensors, 19 (2019), s19071631. https://doi.org/10.3390/s19071631 doi: 10.3390/s19071631
    [24] B. Hjorth, EEG analysis based on time-domain properties, Electroencephalogr. Clin. Neurophysiol., 29 (1970), 306–310. https://doi.org/10.1016/0013-4694(70)90143-4 doi: 10.1016/0013-4694(70)90143-4
    [25] J. Kang, Y. G. Chung, S. Kim, An efficient detection of epileptic seizure by differentiation and spectral analysis of electroencephalograms, Comput. Biol. Med., 66 (2015), 352–356. https://doi.org/10.1016/j.compbiomed.2015.04.034 doi: 10.1016/j.compbiomed.2015.04.034
    [26] Z. Liang, S. Oba, S. Ishii, An unsupervised EEG decoding system for human emotion recognition, Neural Networks, 11 (2019), 257–268. https://doi.org/10.1016/j.neunet.2019.04.003 doi: 10.1016/j.neunet.2019.04.003
    [27] H. Zou, H. H. Zhang, On the adaptive elastic-net with a diverging number of parameters, Ann. Statist., 37 (2009), 1733–1751. https://doi.org/10.1214/08-AOS625 doi: 10.1214/08-AOS625
    [28] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. pattern Anal. Mach. Intell., 27 (2005), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159
    [29] M. Bennasar, Y. Hicks, R. Setchi, Feature selection using Joint Mutual Information Maximisation, Expert Syst. Appl., 42 (2015), 8520–8532. http://doi.org/10.1016/j.eswa.2015.07.007 doi: 10.1016/j.eswa.2015.07.007
    [30] Z. H. Zhou, J. Feng, Deep forest: Towards an alternative to deep neural networks, in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, (2017), 3553–3559. https://doi.org/10.24963/ijcai.2017/497
    [31] Z. Wu, N. E. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv. Adapt. Data Anal., 1 (2009), 1–41. https://doi.org/10.1142/S1793536909000047 doi: 10.1142/S1793536909000047
    [32] S. Koelstra, A. Yazdani, M. Soleymani, C. Mühl, J. Lee, A. Nijholt, et al., Single trial classification of EEG and peripheral physiological signals for recognition of emotions induced by music videos, in International Conference on Brain Informatics, 6334 (2010), 89–100. https://doi.org/10.1007/978-3-642-15314-3_9
    [33] D. Wang, Y. Shang, Modeling physiological data with deep belief networks, Int. J. Inf. Educ. Technol., 3 (2013), 505–511. https://doi.org/10.7763/ijiet.2013.v3.326 doi: 10.7763/ijiet.2013.v3.326
    [34] S. Jirayucharoensak, S. Pan-Ngum, P. Israsena, EEG-Based emotion recognition using deep learning network with principal component based covariate shift adaptation, Sci. World J., 2014 (2014), 627892. https://doi.org/10.1155/2014/627892 doi: 10.1155/2014/627892
    [35] P. Ackermann, C. Kohlschein, J. Á. Bitsch, K. Wehrle, S. Jeschke, EEG-based automaticemotion recognition: Feature extraction, selection and classification methods, in 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), (2016), https://doi.org/10.1109/HealthCom.2016.7749447
    [36] J. Atkinson, D. Campos, Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers, Expert Syst. Appl., 47 (2016), 35–41. https://doi.org/10.1016/j.eswa.2015.10.049 doi: 10.1016/j.eswa.2015.10.049
    [37] A. Mert, A. Akan, Emotion recognition from EEG signals by using multivariate empirical mode decomposition, Pattern Anal. Appl., 21 (2018), 81–89. https://doi.org/10.1007/s10044-016-0567-6 doi: 10.1007/s10044-016-0567-6
    [38] Z. Yin, L. Liu, J. Chen, B. Zhao, Y. Wang, Locally robust EEG feature selection for individual-independent emotion recognition, Expert Syst. Appl., 162 (2020), 113768. https://doi.org/10.1016/j.eswa.2020.113768 doi: 10.1016/j.eswa.2020.113768
    [39] Y. Fang, H. Yang, X. Zhang, H. Liu, B. Tao, Multi-feature input deep forest for EEG-based emotion recognition, Front. Neurorobotics, 14 (2021), 617531. https://doi.org/10.3389/fnbot.2020.617531 doi: 10.3389/fnbot.2020.617531
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2238) PDF downloads(126) Cited by(2)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog