Research article Special Issues

Flocking dynamics and pattern motion for the Cucker-Smale system with distributed delays


  • Received: 02 September 2022 Revised: 13 October 2022 Accepted: 21 October 2022 Published: 02 November 2022
  • In this paper, a new class of Cucker-Smale systems with distributed delays are developed from the measurement perspective. By combining dissipative differential inequalities with a continuity argument, some new sufficient criteria for the flocking dynamics of the proposed model with general communication rate, especially the non-normalized rate, are established. In order to achieve the prescribed pattern motion, the driving force term is incorporated into the delayed collective system. Lastly, some examples and simulations are provided to illustrate the validity of the theoretical results.

    Citation: Jingyi He, Changchun Bao, Le Li, Xianhui Zhang, Chuangxia Huang. Flocking dynamics and pattern motion for the Cucker-Smale system with distributed delays[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1505-1518. doi: 10.3934/mbe.2023068

    Related Papers:

  • In this paper, a new class of Cucker-Smale systems with distributed delays are developed from the measurement perspective. By combining dissipative differential inequalities with a continuity argument, some new sufficient criteria for the flocking dynamics of the proposed model with general communication rate, especially the non-normalized rate, are established. In order to achieve the prescribed pattern motion, the driving force term is incorporated into the delayed collective system. Lastly, some examples and simulations are provided to illustrate the validity of the theoretical results.



    加载中


    [1] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852–862. https://doi.org/10.1109/tac.2007.895842 doi: 10.1109/tac.2007.895842
    [2] F. Cucker, S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197–227. https://doi.org/10.1007/s11537-007-0647-x doi: 10.1007/s11537-007-0647-x
    [3] S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923–947. https://doi.org/10.1007/s10955-011-0285-9 doi: 10.1007/s10955-011-0285-9
    [4] F. Dalmao, E. Mordecki, Cucker-Smale flocking under hierarchical leadership and random interactions, SIAM J. Appl. Math., 71 (2011), 1307–1316. https://doi.org/10.1137/100785910 doi: 10.1137/100785910
    [5] F. Cucker, J. G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Autom. Control, 56 (2011), 1124–1129. https://doi.org/10.1109/tac.2011.2107113 doi: 10.1109/tac.2011.2107113
    [6] S. Y. Ha, J. G. Liu, A simple proof of the cucker-smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. https://doi.org/10.4310/cms.2009.v7.n2.a2 doi: 10.4310/cms.2009.v7.n2.a2
    [7] S. Y. Ha, T. Ha, J. H. Kim, Emergent behavior of a cucker-smale type particle model with nonlinear velocity couplings, IEEE Trans. Autom. Control, 55 (2010), 1679–1683. https://doi.org/10.1109/tac.2010.2046113 doi: 10.1109/tac.2010.2046113
    [8] J. Haskovec, Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Phys. D, 261 (2013), 42–51. https://doi.org/10.1016/j.physd.2013.06.006 doi: 10.1016/j.physd.2013.06.006
    [9] L. Li, L. Huang, J. Wu, Cascade flocking with free-will, Discrete Contin. Dyn. Syst. B, 21 (2015), 497–522. https://doi.org/10.3934/dcdsb.2016.21.497 doi: 10.3934/dcdsb.2016.21.497
    [10] Z. Li, X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156–3174. https://doi.org/10.1137/100791774 doi: 10.1137/100791774
    [11] Z. Li, Effectual leadership in flocks with hierarchy and individual preference, Discrete Contin. Dyn. Syst., 34 (2014), 3683–3702. https://doi.org/10.3934/dcds.2014.34.3683 doi: 10.3934/dcds.2014.34.3683
    [12] H. Liu, X. Wang, Y. Liu, X. Li, On non-collision flocking and line-shaped spatial configuration for a modified singular Cucker-Smale model, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 280–301. https://doi.org/10.1016/j.cnsns.2019.04.006 doi: 10.1016/j.cnsns.2019.04.006
    [13] L. Ru, Z. Li, X. Xue, Cucker-Smale flocking with randomly failed interactions, J. Franklin Inst., 352 (2015), 1099–1118. https://doi.org/10.1016/j.jfranklin.2014.12.007 doi: 10.1016/j.jfranklin.2014.12.007
    [14] L. Ru, X. Xue, Multi-cluster flocking behavior of the hierarchical Cucker-Smale model, J. Franklin Inst., 354 (2017), 2371–2392. https://doi.org/10.1016/j.jfranklin.2016.12.018 doi: 10.1016/j.jfranklin.2016.12.018
    [15] J. J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694–719. https://doi.org/10.1137/060673254 doi: 10.1137/060673254
    [16] Y. P. Choi, J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011–1033. https://doi.org/10.3934/krm.2017040 doi: 10.3934/krm.2017040
    [17] Y. Liu, J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Ana. Appli., 415 (2014), 53–61. https://doi.org/10.1016/j.jmaa.2014.01.036 doi: 10.1016/j.jmaa.2014.01.036
    [18] C. Pignotti, E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053–2076. https://doi.org/10.4310/cms.2018.v16.n8.a1 doi: 10.4310/cms.2018.v16.n8.a1
    [19] J. G. Dong, S. Y. Ha, D. Kim, J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differ. Equation, 266 (2019), 2373–2407. https://doi.org/10.1016/j.jde.2018.08.034 doi: 10.1016/j.jde.2018.08.034
    [20] J. G. Dong, S. Y. Ha, D. Kim, Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. B, 24 (2017), 1–28. https://doi.org/10.3934/dcdsb.2019072 doi: 10.3934/dcdsb.2019072
    [21] C. Pignotti, E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053–2076. https://doi.org/10.4310/cms.2018.v16.n8.a1 doi: 10.4310/cms.2018.v16.n8.a1
    [22] I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513–516. https://doi.org/10.1038/nature03236 doi: 10.1038/nature03236
    [23] Y. P. Choi, S. Y. Ha, Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, Act. Part., 1 (2017), 299C331. https://doi.org/10.1007/978-3-319-49996-3_8 doi: 10.1007/978-3-319-49996-3_8
    [24] R. Erban, J. Haškovec, Y. Sun, A Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535–1557. https://doi.org/10.1137/15m1030467 doi: 10.1137/15m1030467
    [25] Y. P. Choi, C. Pignotti, Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays, Network Heterog. Med., 14 (2019), 789–804. https://doi.org/10.3934/nhm.2019032 doi: 10.3934/nhm.2019032
    [26] X. Wang, L. Wang, J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80–88. https://doi.org/10.1016/j.cnsns.2018.10.017 doi: 10.1016/j.cnsns.2018.10.017
    [27] E. I. Verriest, Inconsistencies in systems with time-varying delays and their resolution, IMA J. Math. Control Inf., 28 (2011), 147–162. https://doi.org/10.1093/imamci/dnr013 doi: 10.1093/imamci/dnr013
    [28] S. Wongkaew, M. Caponigro, A. Borzì, On the control through leadership of the hegselmann–krause opinion formation model, Math. Models Method Appl. Sci., 25 (2014), 565–585. https://doi.org/10.1142/s0218202515400060 doi: 10.1142/s0218202515400060
    [29] C. Huang, X. Zhao, J. Cao, F. E. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819–6834. https://doi.org/10.1088/1361-6544/abab4e doi: 10.1088/1361-6544/abab4e
    [30] C. Huang, Y. Tan, Global behavior of a reaction-diffusion model with time delay and dirichlet condition, J. Differ. Equation, 271 (2021), 186–215. https://doi.org/10.1016/j.jde.2020.08.008 doi: 10.1016/j.jde.2020.08.008
    [31] C. Huang, L. Huang, J. Wu, Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays, Discrete Contin. Dyn. Syst. B, 27 (2022), 2427–2440. https://doi.org/10.3934/dcdsb.2021138 doi: 10.3934/dcdsb.2021138
    [32] C. Huang, B. Liu, Traveling wave fronts for a diffusive nicholson's blowflies equation accompanying mature delay and feedback delay, Appl. Math. Lett., 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321 doi: 10.1016/j.aml.2022.108321
    [33] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/tac.2019.2905271 doi: 10.1109/tac.2019.2905271
    [34] X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
    [35] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.11092Ftac.2020.2964558
    [36] X. Li, Y. Liu, J. Wu, Flocking and pattern motion in a modified Cucker-Smale model, Bull. Korean Math. Soc., 53 (2016), 1327–1339. https://doi.org/10.41342Fbkms.b150629
    [37] C. M. Farza, M. M'Saad, Observer design for a class of disturbed nonlinear systems with time-varying delayed outputs using mixed time-continuous and sampled measurements, Automatica, 107 (2019), 231–240. https://doi.org/10.1016/j.automatica.2019.05.049 doi: 10.1016/j.automatica.2019.05.049
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1552) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog