Research article Special Issues

Application of reaction-diffusion equations for modeling human and breeding site attraction movement behavior of Aedes aegypti mosquito


  • Received: 29 March 2022 Revised: 13 July 2022 Accepted: 19 July 2022 Published: 05 September 2022
  • This paper shows how biological population dynamic models in the form of coupled reaction-diffusion equations with nonlinear reaction terms can be applied to heterogeneous landscapes. The presented systems of coupled partial differential equations (PDEs) combine the dispersal of disease-vector mosquitoes and the spread of the disease in a human population. Realistic biological dispersal behavior is taken into account by applying chemotaxis terms for the attraction to the human host and the attraction of suitable breeding sites. These terms are capable of generating the complex active movement patterns of mosquitoes along the gradients of the attractants. The nonlinear initial boundary value problems are solved numerically for geometries of heterogeneous landscapes, which have been imported from geographic information system data to construct a general-purpose finite-element solver for systems of coupled PDEs. The method is applied to the dispersal of the dengue disease vector for Aedes aegypti in a small-scale rural setting consisting of small houses and different breeding sites, and to a large-scale section of the suburban zone of a metropolitan area in Vietnam. Numerical simulations illustrate how the setup of model equations and geographic information can be used for the assessment of control measures, including the spraying patterns of pesticides and biological control by inducing male sterility.

    Citation: Otto Richter, Anh Nguyen, Truc Nguyen. Application of reaction-diffusion equations for modeling human and breeding site attraction movement behavior of Aedes aegypti mosquito[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12915-12935. doi: 10.3934/mbe.2022603

    Related Papers:

  • This paper shows how biological population dynamic models in the form of coupled reaction-diffusion equations with nonlinear reaction terms can be applied to heterogeneous landscapes. The presented systems of coupled partial differential equations (PDEs) combine the dispersal of disease-vector mosquitoes and the spread of the disease in a human population. Realistic biological dispersal behavior is taken into account by applying chemotaxis terms for the attraction to the human host and the attraction of suitable breeding sites. These terms are capable of generating the complex active movement patterns of mosquitoes along the gradients of the attractants. The nonlinear initial boundary value problems are solved numerically for geometries of heterogeneous landscapes, which have been imported from geographic information system data to construct a general-purpose finite-element solver for systems of coupled PDEs. The method is applied to the dispersal of the dengue disease vector for Aedes aegypti in a small-scale rural setting consisting of small houses and different breeding sites, and to a large-scale section of the suburban zone of a metropolitan area in Vietnam. Numerical simulations illustrate how the setup of model equations and geographic information can be used for the assessment of control measures, including the spraying patterns of pesticides and biological control by inducing male sterility.



    加载中


    [1] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
    [2] K. P. Hadeler, F. Rothe, Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251–263. https://doi.org/10.1007/BF00277154 doi: 10.1007/BF00277154
    [3] V. Volpert, S. Petrovskii, Reaction-diffusion waves in biology, Phys. Life Rev., 6 (2009), 267–310. https://doi.org/10.1016/j.plrev.2009.10.002 doi: 10.1016/j.plrev.2009.10.002
    [4] Z. A. Wang, Mathematics of traveling waves in chemotaxis—review paper, Discrete Contin. Dyn. Syst. B, 18 (2013), 601. https://doi.org/10.3934/dcdsb.2013.18.601 doi: 10.3934/dcdsb.2013.18.601
    [5] J. Murray, W. Seward, On the spatial spread of rabies among foxes with immunity, J. Theor. Biol., 156 (1992), 327–348. https://doi.org/10.1016/S0022-5193(05)80679-4 doi: 10.1016/S0022-5193(05)80679-4
    [6] J. D. Murray, E. A. Stanley, D. L. Brown, On the spatial spread of rabies among foxes, Proc. R. Soc. London, Ser. B, 229 (1986), 111–150. https://doi.org/10.1098/rspb.1986.0078 doi: 10.1098/rspb.1986.0078
    [7] N. A. Maidana, H. M. Yang, Describing the geographic spread of dengue disease by traveling waves, Math. Biosci., 215 (2008), 64–77. https://doi.org/10.1016/j.mbs.2008.05.008 doi: 10.1016/j.mbs.2008.05.008
    [8] L. Almeida, A. Leculier, N. Vauchelet, Analysis of the "rolling carpet" strategy to eradicate an invasive species, preprint, arXiv: 210611252.
    [9] R. Anguelov, Y. Dumont, I. V. Y. Djeumen, On the use of traveling waves for pest/vector elimination using the sterile Insect technique, preprint, arXiv: 201000861.
    [10] A. M. Lutambi, M. A. Penny, T. Smith, N. Chitnis, Mathematical modelling of mosquito dispersal in a heterogeneous environment, Math. Biosci., 241 (2013), 198–216. https://doi.org/10.1016/j.mbs.2012.11.013 doi: 10.1016/j.mbs.2012.11.013
    [11] W. M. Yamashita, S. S. Das, G. Chapiro, Numerical modeling of mosquito population dynamics of Aedes aegypti, Parasites Vectors, 11 (2018), 1–14. https://doi.org/10.1186/s13071-018-2829-1 doi: 10.1186/s13071-018-2829-1
    [12] J. M. Knight, A model of mosquito-mangrove basin ecosystems with implications for management, Ecosystems, 14 (2011), 1382–1395. https://doi.org/10.1007/s10021-011-9487-x doi: 10.1007/s10021-011-9487-x
    [13] O. Richter, S. Moenickes, F. Suhling, Modelling the effect of temperature on the range expansion of species by reaction-diffusion equations, Math. Biosci., 235 (2012), 171–181. https://doi.org/10.1016/j.mbs.2011.12.001 doi: 10.1016/j.mbs.2011.12.001
    [14] C. Greppi, W. J. Laursen, G. Budelli, E. C. Chang, A. M. Daniels, L. Van Giesen, et al., Mosquito heat seeking is driven by an ancestral cooling receptor, Science, 367 (2020), 681–684. https://doi.org/10.1126/science.aay9847 doi: 10.1126/science.aay9847
    [15] J. Gaburro, P. N. Paradkar, M. Klein, A. Bhatti, S. Nahavandi, J. B. Duchemin, Dengue virus infection changes Aedes aegypti oviposition olfactory preferences, Sci. Rep., 8 (2018), 1–11. https://doi.org/10.1038/s41598-018-31608-x doi: 10.1038/s41598-018-31608-x
    [16] A. W. Brown, The attraction of mosquitoes to hosts, JAMA, 196 (1966), 249–252. https://doi.org/10.1001/jama.1966.03100160099028 doi: 10.1001/jama.1966.03100160099028
    [17] R. T. Cardé, Multi-cue integration: how female mosquitoes locate a human host, Curr. Biol., 25 (2015), R793–R795. https://doi.org/10.1016/j.cub.2015.07.057 doi: 10.1016/j.cub.2015.07.057
    [18] C. R. Lazzari, The thermal sense of blood-sucking insects: Why physics matters, Curr. Opin. Insect Sci., 34 (2019), 112–116. https://doi.org/10.1016/j.cois.2019.05.006 doi: 10.1016/j.cois.2019.05.006
    [19] F. Howlett, The influence of temperature upon the biting of mosquitoes, Parasitology, 3 (1910), 479–484. https://doi.org/10.1017/S0031182000002304 doi: 10.1017/S0031182000002304
    [20] C. J. McMeniman, R. A. Corfas, B. J. Matthews, S. A. Ritchie, L. B.Vosshall, Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans, Cell, 156 (2014), 1060–1071. https://doi.org/10.1016/j.cell.2013.12.044 doi: 10.1016/j.cell.2013.12.044
    [21] R. A. Corfas, L. B. Vosshall, The cation channel TRPA1 tunes mosquito thermotaxis to host temperatures, Elife, 4 (2015), e11750. https://doi.org/10.7554/eLife.11750 doi: 10.7554/eLife.11750
    [22] G. Menda, J. H. Uhr, R. A. Wyttenbach, F. M. Vermeylen, D. M. Smith, L. C. Harrington, et al., Associative learning in the dengue vector mosquito, Aedes aegypti: avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus, J. Exp. Biol., 216 (2013), 218–223. https://doi.org/10.1242/jeb.074898 doi: 10.1242/jeb.074898
    [23] C. Mwandawiro, M. Boots, N. Tuno, W. Suwonkerd, Y. Tsuda, M. Takagi, Heterogeneity in the host preference of Japanese encephalitis vectors in Chiang Mai, northern Thailand, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 238–242. https://doi.org/10.1016/S0035-9203(00)90303-1 doi: 10.1016/S0035-9203(00)90303-1
    [24] A. Vantaux, T. Lefèvre, K. R. Dabiré, A. Cohuet, Individual experience affects host choice in malaria vector mosquitoes, Parasites Vectors, 7 (2014), 1–7. https://doi.org/10.1186/1756-3305-7-249 doi: 10.1186/1756-3305-7-249
    [25] E. Herbert, R. Meyer, P. Turbes, A comparison of mosquito catches with CDC light traps and CO2-baited traps in the Republic of Vietnam, Mosq. News, 32 (1972), 212–214.
    [26] K. Huber, L. Le Loan, T. H. Hoang, T. K. Tien, F. Rodhain, A. B. Failloux, Aedes aegypti in South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides, Southeast Asian J. Trop. Med. Public Health, 34 (2003), 81–86.
    [27] J. A. L. Jeffery, N. Thi Yen, V. S. Nam, L. T. Nghia, A. A. Hoffmann, B. H. Kay, et al., Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue, PLoS Neglected Trop. Dis., 3 (2009), e552. https://doi.org/10.1371/journal.pntd.0000552 doi: 10.1371/journal.pntd.0000552
    [28] A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks, and herds, Adv. Biophys., 22 (1986), 1–94. https://doi.org/10.1016/0065-227X(86)90003-1 doi: 10.1016/0065-227X(86)90003-1
    [29] D. Getachew, H. Tekie, T. Gebre-Michael, M. Balkew, A. Mesfin, Breeding sites of Aedes aegypti: potential dengue vectors in Dire Dawa, East Ethiopia, Interdiscip. Perspect. Infect. Dis., 2015 (2015). https://doi.org/10.1155/2015/706276 doi: 10.1155/2015/706276
    [30] Q. Wang, P. M. Atkinson, Spatio-temporal fusion for daily Sentinel-2 images, Remote Sens. Environ., 204 (2018), 31–42. https://doi.org/10.1016/j.rse.2017.10.046 doi: 10.1016/j.rse.2017.10.046
    [31] R. S. Lees, J. R. Gilles, J. Hendrichs, M. J. B. Vreysen, K. Bourtzis, Back to the future: the sterile insect technique against mosquito disease vectors, Curr. Opin. Insect Sci., 10 (2015), 156–162. https://doi.org/10.1016/j.cois.2015.05.011 doi: 10.1016/j.cois.2015.05.011
    [32] D. Brown, A. Bruder, M. Kummel, Endogenous spatial heterogeneity in a multi-patch predator-prey system: insights from a field-parameterized model, Theor. Ecol., 14 (2021), 107–122. https://doi.org/10.1007/s12080-020-00483-6 doi: 10.1007/s12080-020-00483-6
    [33] M. R. Sanford, J. K. Tomberlin, Conditioning individual mosquitoes to an odor: sex, source, and time, PloS One, 6 (2011), e24218. https://doi.org/10.1371/journal.pone.0024218 doi: 10.1371/journal.pone.0024218
    [34] E. K. Lutz, C. Lahondere, C. Vinauger, A. Riffell, Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: A life history perspective, Curr. Opin. Insect Sci., 20 (2017), 75–83. https://doi.org/10.1016/j.cois.2017.03.002 doi: 10.1016/j.cois.2017.03.002
    [35] J. Charlwood, P. M. Graves, T. F. de Marshall, Evidence for a "memorized" home range in Anopheles farauti females from Papua New Guinea, Med. Vet. Entomol., 2 (1988), 101–108. https://doi.org/10.1111/j.1365-2915.1988.tb00059.x doi: 10.1111/j.1365-2915.1988.tb00059.x
    [36] P. McCall, F. Mosha, K. Njunwa, K. Sherlock, Evidence for memorized site-fidelity in Anopheles arabiensis, Trans. R. Soc. Trop. Med. Hyg., 95 (2001), 587–590. https://doi.org/10.1016/S0035-9203(01)90087-2 doi: 10.1016/S0035-9203(01)90087-2
    [37] O. A. Bruzzone, M. E. Utgés, Analysis of the invasion of a city by Aedes aegypti via mathematical models and Bayesian statistics, Theor. Ecol., 15 (2022), 1–16. https://doi.org/10.1007/s12080-022-00528-y doi: 10.1007/s12080-022-00528-y
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2019) PDF downloads(102) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog