Research article

A comparison and calibration of integer and fractional-order models of COVID-19 with stratified public response

  • Received: 03 June 2022 Revised: 10 July 2022 Accepted: 20 July 2022 Published: 01 September 2022
  • The spread of SARS-CoV-2 in the Canadian province of Ontario has resulted in millions of infections and tens of thousands of deaths to date. Correspondingly, the implementation of modeling to inform public health policies has proven to be exceptionally important. In this work, we expand a previous model of the spread of SARS-CoV-2 in Ontario, "Modeling the impact of a public response on the COVID-19 pandemic in Ontario, " to include the discretized, Caputo fractional derivative in the susceptible compartment. We perform identifiability and sensitivity analysis on both the integer-order and fractional-order SEIRD model and contrast the quality of the fits. We note that both methods produce fits of similar qualitative strength, though the inclusion of the fractional derivative operator quantitatively improves the fits by almost 27% corroborating the appropriateness of fractional operators for the purposes of phenomenological disease forecasting. In contrasting the fit procedures, we note potential simplifications for future study. Finally, we use all four models to provide an estimate of the time-dependent basic reproduction number for the spread of SARS-CoV-2 in Ontario between January 2020 and February 2021.

    Citation: Somayeh Fouladi, Mohammad Kohandel, Brydon Eastman. A comparison and calibration of integer and fractional-order models of COVID-19 with stratified public response[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12792-12813. doi: 10.3934/mbe.2022597

    Related Papers:

  • The spread of SARS-CoV-2 in the Canadian province of Ontario has resulted in millions of infections and tens of thousands of deaths to date. Correspondingly, the implementation of modeling to inform public health policies has proven to be exceptionally important. In this work, we expand a previous model of the spread of SARS-CoV-2 in Ontario, "Modeling the impact of a public response on the COVID-19 pandemic in Ontario, " to include the discretized, Caputo fractional derivative in the susceptible compartment. We perform identifiability and sensitivity analysis on both the integer-order and fractional-order SEIRD model and contrast the quality of the fits. We note that both methods produce fits of similar qualitative strength, though the inclusion of the fractional derivative operator quantitatively improves the fits by almost 27% corroborating the appropriateness of fractional operators for the purposes of phenomenological disease forecasting. In contrasting the fit procedures, we note potential simplifications for future study. Finally, we use all four models to provide an estimate of the time-dependent basic reproduction number for the spread of SARS-CoV-2 in Ontario between January 2020 and February 2021.



    加载中


    [1] World Health Organization, Novel Coronavirus (2019-nCoV) SITUATION REPORT-7, (2020).
    [2] I. Berry, J. P. R. Soucy, A. Tuite, D. Fisman, Open access epidemiologic data and an interactive dashboard to monitor the COVID-19 outbreak in Canada, CMAJ, 192 (2020), E420–E420. https://doi.org/10.1503/cmaj.75262 doi: 10.1503/cmaj.75262
    [3] E. D. Giuseppe, M. Moroni, M. Caputo, Flux in porous media with memory: Models and experiments, Transp. Porous. Media, 83 (2010), 479–500. https://doi.org/10.1007/s11242-009-9456-4 doi: 10.1007/s11242-009-9456-4
    [4] A. C. Chamgoué, G. S. M. Ngueuteu, R. Yamapi, P. Woafo, Memory effect in a self-sustained birhythmic biological system, Chaos Soliton. Fract., 109 (2018), 160–169. https://doi.org/10.1016/j.chaos.2018.02.027 doi: 10.1016/j.chaos.2018.02.027
    [5] E. Ahmed, A. Hashish, F. A. Rihan, On fractional order cancer model, JFCA, 3 (2012), 1–6.
    [6] F. Özköse, M. Yavuz, M. T. Șenel, R. Habbireeh, Fractional Order Modelling of Omicron SARS-CoV-2 Variant Containing Heart Attack Effect Using Real Data from the United Kingdom, Chaos Soliton. Fract., 157 (2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954 doi: 10.1016/j.chaos.2022.111954
    [7] D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Soliton. Fract., 134 (2020), 109761. https://doi.org/10.1016/j.chaos.2020.109761 doi: 10.1016/j.chaos.2020.109761
    [8] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4
    [9] Z. Zhang, R. Gul, A. Zeb, Global sensitivity analysis of COVID-19 mathematical model, Alex. Eng. J., 60 (2021), 565–572. https://doi.org/10.1016/j.aej.2020.09.035 doi: 10.1016/j.aej.2020.09.035
    [10] C. M. A. Pinto, A. R. M. Carvalho, A latency fractional order model for HIV dynamics, J. Comput. Appl. Math., 312 (2017), 240–256. https://doi.org/10.1016/j.cam.2016.05.019 doi: 10.1016/j.cam.2016.05.019
    [11] K. N. Nabi, P. Kumar, V. S. Erturk, Projections and fractional dynamics of COVID-19 with optimal control strategies, Chaos Soliton. Fract., 145 (2021), 110689. https://doi.org/10.1016/j.chaos.2021.110689 doi: 10.1016/j.chaos.2021.110689
    [12] C. N. Angstmann, B. I. Henry, A. V. McGann, A fractional order recovery SIR model from a stochastic process, Bull. Math. Biol., 78 (2016), 468–499. https://doi.org/10.1007/s11538-016-0151-7 doi: 10.1007/s11538-016-0151-7
    [13] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, Á. Torres, On a fractional order Ebola epidemic model, Adv. Differ. Equ., 2015 (2015), 1–12. https://doi.org/10.1186/s13662-015-0613-5 doi: 10.1186/s13662-015-0613-5
    [14] E. Demirci, A. Unal, A fractional order SEIR model with density dependent death rate, Hacettepe J. Math. Stat., 40 (2011), 287–295.
    [15] P. Kumar, V. S. Erturk, A. Yusuf, K. S. Nisar, S. F. Abdelwahab, A study on canine distemper virus (CDV) and rabies epidemics in the red fox population via fractional derivatives, Results Phys., 25 (2021), 104281. https://doi.org/10.1016/j.rinp.2021.104281 doi: 10.1016/j.rinp.2021.104281
    [16] R. De Luca, F. Romeo, Memory effects and self-excited oscillations in deterministic epidemic models with intrinsic time delays, Eur. Phys. J. Plus, 135 (2020), 1–17. https://doi.org/10.1140/epjp/s13360-020-00862-2 doi: 10.1140/epjp/s13360-020-00862-2
    [17] E. Kharazmi, M. Cai, X. Zheng, Z. Zhang, G. Lin, G. E. Karniadakis, Identifiability and predictability of integer-and fractional-order epidemiological models using physics-informed neural networks, Nat. Comput. Sci., 1 (2021), 744–753. https://doi.org/10.1038/s43588-021-00158-0 doi: 10.1038/s43588-021-00158-0
    [18] X. B. Jin, W. T. Gong, J. L. Kong, Y. T. Bai, T. L. Su, PFVAE: a planar flow-based variational auto-encoder prediction model for time series data, Mathematics, 10 (2022). https://doi.org/10.3390/math10040610 doi: 10.3390/math10040610
    [19] X. B. Jin, W. Z. Zheng, J. L. Kong, X. Y. Wang, M. Zuo, Q. C. Zhang, et al., Deep-learning temporal predictor via bidirectional self-attentive encoder–decoder framework for IOT-based environmental sensing in intelligent greenhouse, Agriculture, 11 (2021), 802. https://doi.org/10.3390/agriculture11080802 doi: 10.3390/agriculture11080802
    [20] X. Jin, J. Zhang, J. Kong, T. Su, Y. Bai, A reversible automatic selection normalization (RASN) deep network for predicting in the smart agriculture system, Agronomy, 12 (2022), 591. https://doi.org/10.3390/agronomy12030591 doi: 10.3390/agronomy12030591
    [21] M. Caputo, Linear models of dissipation whose Q is almost frequency independent—II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [22] D. C. López C, G. Wozny, A. Flores-Tlacuahuac, R. Vasquez-Medrano, V. M. Zavala, A computational framework for identifiability and ill-conditioning analysis of lithium-ion battery models, Ind. Eng. Chem. Res., 55 (2016), 3026–3042. https://doi.org/10.1021/acs.iecr.5b03910 doi: 10.1021/acs.iecr.5b03910
    [23] S. R. Pope, L. M. Ellwein, Ch. L. Zapata, V. Novak, C. T. Kelley, M. S. Olufsen, Estimation and identification of parameters in a lumped cerebrovascular model, Math. Biosci. Eng., 6 (2009), 93–115. https://doi.org/10.3934/mbe.2009.6.93 doi: 10.3934/mbe.2009.6.93
    [24] M. S. Olufsen, J. T. Ottesen, A practical approach to parameter estimation applied to model predicting heart rate regulation, J. Math. Biol., 67 (2013), 39–68. https://doi.org/10.1007/s00285-012-0535-8 doi: 10.1007/s00285-012-0535-8
    [25] M. Yavuz, F.Ö. Coșar, F. Günay, F. N. Özdemir, A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign, OJMSi, 9 (2021), 299–321. https://doi.org/10.4236/ojmsi.2021.93020 doi: 10.4236/ojmsi.2021.93020
    [26] B. Eastman, C. Meaney, M. Przedborski, M. Kohandel, Modeling the impact of public response on the COVID-20 pandemic in Ontario, PLoS One, 15 (2020), e249455. https://doi.org/10.1371/journal.pone.0249456 doi: 10.1371/journal.pone.0249456
    [27] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier 198 (1998).
    [28] O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A Math. Theor., 40 (2007), 6287. https://doi.org/10.1088/1751-8113/40/24/003 doi: 10.1088/1751-8113/40/24/003
    [29] M. Ahmadinia, Z. Safari, S. Fouladi, Analysis of local discontinuous Galerkin method for time–space fractional convection–diffusion equations, BIT Numer. Math, 58 (2018), 533–554. https://doi.org/10.1007/s10543-018-0697-x doi: 10.1007/s10543-018-0697-x
    [30] S. Fouladi, M. S. Dahaghin, Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods, Chaos Soliton. Fract., 157 (2022), 111915. https://doi.org/10.1016/j.chaos.2022.111915 doi: 10.1016/j.chaos.2022.111915
    [31] P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Soliton. Fract., 140 (2020), 110272. https://doi.org/10.1016/j.chaos.2020.110272 doi: 10.1016/j.chaos.2020.110272
    [32] M. A. Khan, S. Ullah, S. Ullah, M. Farhan, Fractional order SEIR model with generalized incidence rate, AIMS Math., 5 (2020), 2843–2857. https://doi.org/10.3934/math.2020182 doi: 10.3934/math.2020182
    [33] K. N. Nabi, H. Abboubakar, P. Kumar, Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives, Chaos Soliton. Fract., 141 (2020), 110283. https://doi.org/10.1016/j.chaos.2020.110283 doi: 10.1016/j.chaos.2020.110283
    [34] A. Zeb, P. Kumar, V. S. Erturk, T. Sitthiwirattham, A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms, J. King Saud Univ. Sci., 34 (2022), 101914. https://doi.org/10.1016/j.jksus.2022.101914 doi: 10.1016/j.jksus.2022.101914
    [35] B. M. Yambiyo, F. Norouzi, G. M. N'Guérékata, A study of an epidemic SIR model via homotopy analysis method in the sense of Caputo-fractional system, in Studies in evolution equations and related topics, (eds. G. M. N'Guérékata and B. Toni), (2021), 51–67. https://doi.org/10.1007/978-3-030-77704-3_4
    [36] P. Kumar, V. S. Erturk, M. Vellappandi, H. Trinh, V. Govindaraj, A study on the maize streak virus epidemic model by using optimized linearization-based predictor-corrector method in Caputo sense, Chaos Soliton. Fract., 158 (2022), 112067. https://doi.org/10.1016/j.chaos.2022.112067 doi: 10.1016/j.chaos.2022.112067
    [37] P. Kumar, V. S. Erturk, H. Almusawa, Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana–Baleanu derivatives, Results Phys., 24 (2021), 104186. https://doi.org/10.1016/j.rinp.2021.104186 doi: 10.1016/j.rinp.2021.104186
    [38] S. Abbas, S. Tyagi, P. Kumar, V. S. Ertürk, S. Momani, Stability and bifurcation analysis of a fractional-order model of cell-to-cell spread of HIV-1 with a discrete time delay, Math. Methods Appl. Sci., 45 (2022), 7081–7095. https://doi.org/10.1002/mma.8226 doi: 10.1002/mma.8226
    [39] Y. Lin, Ch. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [40] G. H. Gao, Z. Z. Sun, H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
    [41] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med., 172 (2020), 577–582. https://doi.org/10.7326/M20-0504 doi: 10.7326/M20-0504
    [42] X. Bai, H. Rui, An efficient FDTD algorithm for 2D/3D time fractional Maxwell's system, Appl. Math. Lett., 116 (2021), 106992. https://doi.org/10.1016/j.aml.2020.106992 doi: 10.1016/j.aml.2020.106992
    [43] X. Bai, S. Wang, H. Rui, Numerical analysis of finite-difference time-domain method for 2D/3D Maxwell's equations in a Cole-Cole dispersive medium, Comput. Math. with Appl., 93 (2021), 230–252. https://doi.org/10.1016/j.camwa.2021.04.015 doi: 10.1016/j.camwa.2021.04.015
    [44] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman, 1989.
    [45] H. Miao, X. Xia, A. S. Perelson, H. Wu, On identifiability of nonlinear ODE models and applications in viral dynamics, SIREV, 53 (2011), 3–39. https://doi.org/10.1137/090757009 doi: 10.1137/090757009
    [46] R. Brady, Mathematical modeling of the acute inflammatory response & cardiovascular dynamics in young men, Ph.D. Thesis, (2017). http://www.lib.ncsu.edu/resolver/1840.20/34823
    [47] C. Piazzola, L. Tamellini, R. Tempone, A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology, Math. Biosci., 332 (2021), 108514. https://doi.org/10.1016/j.mbs.2020.108514 doi: 10.1016/j.mbs.2020.108514
    [48] K. Rajagopal, N. Hasanzadeh, F. Parastesh, I. I. Hamarash, S. Jafari, I. Hussain, A fractional-order model for the novel coronavirus (COVID-19) outbreak, Nonlinear Dyn., 101 (2020), 711–718. https://doi.org/10.1007/s11071-020-05757-6 doi: 10.1007/s11071-020-05757-6
    [49] M. A. Khan, M. Ismail, S. Ullah, M. Farhan, Fractional order SIR model with generalized incidence rate, AIMS Math., 5 (2020), 1856–1880. https://doi.org/10.3934/math.2020124 doi: 10.3934/math.2020124
    [50] L. M. A. Bettencourt, R. M. Ribeiro, Real time bayesian estimation of the epidemic potential of emerging infectious diseases, PLoS One, 3 (2008), e2185. https://doi.org/10.1371/journal.pone.0002185 doi: 10.1371/journal.pone.0002185
    [51] H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Serial interval of novel coronavirus (COVID-19) infections, Int. J. Infect. Dis., 93 (2020), 284–286. https://doi.org/10.1016/j.ijid.2020.02.060 doi: 10.1016/j.ijid.2020.02.060
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1770) PDF downloads(63) Cited by(3)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog