Zagreb indices are well-known and historical indices that are very useful to calculate the properties of compounds. In the last few years, various kinds of Zagreb and Randic indices are investigated and defined to fulfil the demands of various engineering applications. Phenylenes are a class of conjugated hydrocarbons composed of a special arrangement of six- and four-membered rings. This special chain, produced by zeroth-order Markov process has been commonly appeared in the field of pharmacology and materials. Here, we compute the expected values of a multiplicative versions of the geometric arithmetic and atomic bond connectivity indices for these special hydrocarbons. Moreover, we make comparisons in the form of explicit formulae and numerical tables between the expected values of these indices in the random polyphenyl $ \mathbb{P}_n $ and spiro $ \mathbb{S}_n $ chains.
Citation: Zahid Raza, Juan LG Guirao, Ghada Bassioni. The comparative analysis of two molecular indices in random polyphenyl and spiro chains[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12500-12517. doi: 10.3934/mbe.2022583
Zagreb indices are well-known and historical indices that are very useful to calculate the properties of compounds. In the last few years, various kinds of Zagreb and Randic indices are investigated and defined to fulfil the demands of various engineering applications. Phenylenes are a class of conjugated hydrocarbons composed of a special arrangement of six- and four-membered rings. This special chain, produced by zeroth-order Markov process has been commonly appeared in the field of pharmacology and materials. Here, we compute the expected values of a multiplicative versions of the geometric arithmetic and atomic bond connectivity indices for these special hydrocarbons. Moreover, we make comparisons in the form of explicit formulae and numerical tables between the expected values of these indices in the random polyphenyl $ \mathbb{P}_n $ and spiro $ \mathbb{S}_n $ chains.
[1] | H. Wiener, Structure determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005 |
[2] | H. Hosoya, A newly proposed quantity chracterizingthe topologcal nature of struuctural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan, 44 (1971), 2332–2339. https://doi.org/10.1246/bcsj.44.2332 doi: 10.1246/bcsj.44.2332 |
[3] | I. Gutman, K. Das, The first Zagreb index 30 years after, Match Commun. Math. Comput. Chem., 50 (2004), 83–92. |
[4] | D. Bonchev, Information Theoretic Indices for Characterization of Molecular Structure, Research Studies Press, Chichester, 2010. |
[5] | H. Gonzales-Diaz, Topological Indices for Medicinal Chemistry, Biology, Parasitology, Neurological and Social Networks, Transworld Research Network, 2010. |
[6] | N. Trinajstic, Chemical Graph Theory, 2$^{nd}$ edition, CRC Press, Boca Raton, 1992. https://doi.org/10.1201/9781315139111 |
[7] | M. Karelson, Moledular Descriptors in QSR/QSPR, Wiley-Interscience, New York, 2000. |
[8] | L. B. Kier, L. H. Hall, Medicinal chemistry: A series of monographs, Med. Chem., 14 (1976), 2. https://doi.org/10.1016/B978-0-12-406560-4.50001-5 doi: 10.1016/B978-0-12-406560-4.50001-5 |
[9] | E. Estrada, L. Torres, L. Rodr´ýguez, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849–855. |
[10] | T. Divnic, M. Milivojevic, L. Pavlovic, Extremal graphs for the geometric-arithmetic index with given minimum degree, Discrete Appl. Math., 162 (2014), 386–390. https://doi.org/10.1016/j.dam.2013.08.001 doi: 10.1016/j.dam.2013.08.001 |
[11] | E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463 (2008), 422–425. https://doi.org/10.1016/j.cplett.2008.08.074 doi: 10.1016/j.cplett.2008.08.074 |
[12] | V. R. Kulli, Multiplicative connectivity indices of certain nanotubes, Ann. Pure and App. Math., 12 (2016), 169–176. http://dx.doi.org/10.22457/apam.v12n2a8 doi: 10.22457/apam.v12n2a8 |
[13] | R. Škrekovski, D. Dimitrov, J. Zhong, H. Wu, W. Gao, Remarks on multiplicative atom-bond connectivity index, IEEE Access, 7 (2019), 76806–76811. https://doi.org/10.1109/access.2019.2920882 doi: 10.1109/access.2019.2920882 |
[14] | D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369–1376. https://doi.org/10.1007/s10910-009-9520-x doi: 10.1007/s10910-009-9520-x |
[15] | K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem., 64 (2010), 619–630. |
[16] | K. C. Das, N. Trinajstic, Comparison between first geometric-arithmetic index and atom-bond connectivity index, Chem. Phys. Lett., 497 (2010), 149–151. https://doi.org/10.1016/j.cplett.2010.07.097 doi: 10.1016/j.cplett.2010.07.097 |
[17] | H. Deng, Wiener indices of spiro and polyphenyl hexagonal chains, Math. Comput. Model., 55 (2012), 634–644. https://doi.org/10.1016/j.mcm.2011.08.037 doi: 10.1016/j.mcm.2011.08.037 |
[18] | M. Randic, Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 660–661. http://dx.doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001 |
[19] | Z. Raza, The harmonic and second Zagreb indices in random polyphenyl and spiro chains, Poly. Aro. Compounds, 42 (2022), 671–680. https://doi.org/10.1080/10406638.2020.1749089 doi: 10.1080/10406638.2020.1749089 |
[20] | Z. Raza, M. Imran, Expected values of some molecular descriptors in random cyclooctane chains, Symmetry, 13 (2021), 2197–2210. |
[21] | Z. Raza, The expected values of some indices in random phenylene chains, Eur. Phys. J. Plus, 136 (2021), 1–15. https://doi.org/10.1140/epjp/s13360-021-01082-y doi: 10.1140/epjp/s13360-021-01082-y |
[22] | Z. Raza, K. Naz, S. Ahmad, E Expected values of molecular descriptors in random polyphenyl chains, Emerging Sci. J., 6 (2022), 151–165. |
[23] | Z. Raza, The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains, Heliyon, 6 (2020), e04479. https://doi.org/10.1016/j.heliyon.2020.e04479 doi: 10.1016/j.heliyon.2020.e04479 |
[24] | J. M. Rodríguez, J. M. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 277 (2016), 142–153. https://doi.org/10.1016/j.amc.2015.12.046 doi: 10.1016/j.amc.2015.12.046 |
[25] | Y. Yuan, B. Zhou, N. Trinajstić, On geometric-arithmetic index, J. Math. Chem., 47 (2010), 833–841. https://doi.org/10.1007/s10910-009-9603-8 doi: 10.1007/s10910-009-9603-8 |
[26] | B. Zhou, I. Gutman, B. Furtula, Z. Du, On two types of geometric-arithmetic index, Chem. Physc. Lett., 482 (2009), 153–155. https://doi.org/10.1016/j.cplett.2009.09.102 doi: 10.1016/j.cplett.2009.09.102 |
[27] | M. Burechecks, V. Pekarek, T. Ocelka, Thermochemical properties and relative stability of polychlorinated biphenyls, Environ. Tox. Pharm., 25 (2008), 2610–2617. https://doi.org/10.1016/j.etap.2007.10.010 doi: 10.1016/j.etap.2007.10.010 |
[28] | G. Huang, M. Kuang, H. Deng, The expected values of Kirchhoff indices in the random polyphenyl and spiro chains, Ars Math. Comtemp., 9 (2015), 197–207. https://doi.org/10.26493/1855-3974.458.7b0 doi: 10.26493/1855-3974.458.7b0 |
[29] | W. Yang, F. Zhang, Wiener index in random polyphenyl chains, Match Commun. Math. Comput. Chem., 68 (2012), 371–376. |
[30] | G. Huang, M. Kuang, H. Deng, The expected values of Hosoya index and Merrifield-Simmons index in a random polyphenylene chain, J. Comb. Optim., 32 (2016), 550–562. https://doi.org/10.1007/s10878-015-9882-x doi: 10.1007/s10878-015-9882-x |
[31] | Y. Yang, H. Liu, H. Wang, S. Sun, On spiro and polypheny hexagonal chains with respect to the number of BC-subtrees, Int. J. Comput. Math., 94 (2017), 774–799. https://doi.org/10.1080/00207160.2016.1148811 doi: 10.1080/00207160.2016.1148811 |
[32] | S. Wei, X. Ke, G. Hao, Comparing the excepted values of the atom-bond connectivity and geometric-arithmetic indices in random spiro chains, J. Inequal. Appl., 45 (2018), 45–55. https://doi.org/10.1186/s13660-018-1628-8 doi: 10.1186/s13660-018-1628-8 |
[33] | Y. Bai, B. Zhao, P. Zhao, Extremal Merrifield-Simmons index and Hosoya index of polyphenyl chains, Match Commun. Math. Comput. Chem., 62 (2009), 649–656. |
[34] | H. Bian, F. Zhang, Tree-like polyphenyl systems with extremal Wiener indices, Match Commun. Math. Comput. Chem., 61 (2009), 631–642. |
[35] | H. Deng, Z. Tang, Kirchhoff indices of spiro and polyphenyl hexagonal chains, Util. Math., 95 (2014), 113–128. |
[36] | T. Doslic, M. S. Litz, Matchings and independent sets in polyphenylene chains, Match Commun. Math. Comput. Chem., 67 (2012), 313–330. |
[37] | A. Chen, F. Zhang, Wiener index and perfect matchings in random phenylene chains, MATCH Commun. Math. Comput. Chem., 61 (2009), 623–630. |
[38] | X. Chen, B. Zhao, P. Zhao, Six-membered ring spiro chains with extremal Merrifild-Simmons index and Hosaya index, MATCH Commun. Math. Comput. Chem., 62 (2009), 657–665. |
[39] | Y. Yang, H. Liu, H. Wang, H. Fu, Subtrees of spiro and polypheny hexagonal chains, Appl. Math. Comput., 268 (2015), 547–560. https://doi.org/10.1016/j.amc.2015.06.094 doi: 10.1016/j.amc.2015.06.094 |
[40] | X. Zhang, H. Jiang, J. B. Liu, Z. Shao, The cartesian product and join graphs on edge-version atom-bond connectivity and geometric arithmetic indices, Molecules, 23 (2018), 1731. https://doi.org/10.3390/molecules23071731 doi: 10.3390/molecules23071731 |
[41] | X. Zhang, W. Xinling, S. Akhter, M. K. Jamil, J. B. Liu, M. R. Farahani, Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs, Symmetry, 10 (2018), 751. https://doi.org/10.3390/sym10120751 doi: 10.3390/sym10120751 |
[42] | X. Zhang, H. M. Awais, M. Javaid, M. K. Siddiqui, Multiplicative zagreb indices of molecular graphs, J. Chem., 268 (2019). https://doi.org/10.1155/2019/5294198 |
[43] | M. Cancan, M. Imran, S. Akhter, M. Siddiqui, M. Hanif, Computing forgotten topological index of extremal cactus chains, Appl. Math. Nonlinear Sci., 6 (2021), 439–446. https://doi.org/10.2478/amns.2020.2.00075 doi: 10.2478/amns.2020.2.00075 |
[44] | M. B. Belay, C. Wang, The first general Zagreb coindex of graph operations, Appl. Math. Nonlinear Sci., 5 (2020), 109–120. https://doi.org/10.2478/amns.2020.2.00020 doi: 10.2478/amns.2020.2.00020 |
[45] | M. Berhe, C. Wang, Computation of certain topological coindices of graphene sheet and C4C8(S) nanotubes and nanotorus, Appl. Math. Nonlinear Sci., 4 (2019), 455–468. https://doi.org/10.2478/AMNS.2019.2.00043 doi: 10.2478/AMNS.2019.2.00043 |
[46] | S. Goyal, P. Garg, V. Mishra, New composition of graphs and their Wiener Indices, Appl. Math. Nonlinear Sci., 4 (2019), 163–168. https://doi.org/10.2478/AMNS.2019.1.00016 doi: 10.2478/AMNS.2019.1.00016 |
[47] | S. Shirakol, M. Kalyanshetti, S. Hosamani, QSPR Analysis of certain distance based topological indices, Appl. Math. Nonlinear Sci., 4 (2019), 371–386. https://doi.org/10.2478/AMNS.2019.2.00032 doi: 10.2478/AMNS.2019.2.00032 |
[48] | M. Naeem, M. Siddiqui, J. Guirao, W. Gao, New and modified eccentric indices of octagonal grid $O^{m}_n$, Appl. Math. Nonlinear Sci., 3 (2018), 209–228. https://doi.org/10.21042/AMNS.2018.1.00016 doi: 10.21042/AMNS.2018.1.00016 |
[49] | A. Baig, M. Naeem, W. Gao, Revan and hyper-Revan indices of Octahedral and icosahedral networks, Appl. Math. Nonlinear Sci., 3 (2018), 33–40. https://doi.org/10.21042/AMNS.2018.1.00004 doi: 10.21042/AMNS.2018.1.00004 |
[50] | M. Sardar, S. Zafar, Z. Zahid, Computing topological indices of the line graphs of Banana tree graph and Firecracker graph, Appl. Math. Nonlinear Sci., 2 (2017), 83–92. https://doi.org/10.21042/AMNS.2017.1.00007 doi: 10.21042/AMNS.2017.1.00007 |
[51] | V. Lokesha, T. Deepika, P. Ranjini, I. Cangul, Operations of nanostructures via SDD, ABC$_{4}$ and GA$_{5}$ indices, Appl. Math. Nonlinear Sci., 2 (2017), 173–180. https://doi.org/10.21042/AMNS.2017.1.00014 doi: 10.21042/AMNS.2017.1.00014 |