This study presents a new analytical method to extract the fuzzy solution of the fuzzy initial value problem (FIVP) of fourth-order fuzzy ordinary differential equations (FODEs) using the Laplace operator under the strongly generalized Hukuhara differentiability (SGH-differentiability). To this end, firstly the fourth-order derivative of the fuzzy valued function (FVF) according to the type of the SGH-differentiability is introduced, and then the relationships between the fourth-order derivative of the FVF and its Laplace transform are established. Furthermore, considering the types of differentiabilities and switching points, some fundamental theorems related to the Laplace transform of the fourth-order derivative of the FVF are stated and proved in detail and a method to solve FIVP by the fuzzy Laplace transform is presented in detail. An application of our proposed method in Resistance-Inductance circuit (RL circuit) is presented. Finally, FIVP's solution is graphically analyzed to visualize and support theoretical results.
Citation: Muhammad Akram, Tayyaba Ihsan, Tofigh Allahviranloo, Mohammed M. Ali Al-Shamiri. Analysis on determining the solution of fourth-order fuzzy initial value problem with Laplace operator[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 11868-11902. doi: 10.3934/mbe.2022554
This study presents a new analytical method to extract the fuzzy solution of the fuzzy initial value problem (FIVP) of fourth-order fuzzy ordinary differential equations (FODEs) using the Laplace operator under the strongly generalized Hukuhara differentiability (SGH-differentiability). To this end, firstly the fourth-order derivative of the fuzzy valued function (FVF) according to the type of the SGH-differentiability is introduced, and then the relationships between the fourth-order derivative of the FVF and its Laplace transform are established. Furthermore, considering the types of differentiabilities and switching points, some fundamental theorems related to the Laplace transform of the fourth-order derivative of the FVF are stated and proved in detail and a method to solve FIVP by the fuzzy Laplace transform is presented in detail. An application of our proposed method in Resistance-Inductance circuit (RL circuit) is presented. Finally, FIVP's solution is graphically analyzed to visualize and support theoretical results.
[1] | L. A. Zadeh, Fuzzy sets, in Fuzzy Sets, Fuzzy Logic and Fuzzy Systems, 1996 (1996), 394–432. https://doi.org/10.1142/9789814261302_0021 |
[2] | S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man Cybern., 1996 (1996), 30–34. https://doi.org/10.1109/TSMC.1972.5408553 |
[3] | D. Dubios, H. Prade, Towards fuzzy differential calculus, Fuzzy Sets Syst., 8 (1982), 1–17. https://doi.org/10.1016/0165-0114(82)90025-2 doi: 10.1016/0165-0114(82)90025-2 |
[4] | O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal. Theory Methods Appl., 64 (2006), 895–900. https://doi.org/10.1016/j.na.2005.01.003 doi: 10.1016/j.na.2005.01.003 |
[5] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 |
[6] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy ordinary differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001 |
[7] | M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5 |
[8] | M. L. Puri, D. A. Ralescu, L. Zadeh, Fuzzy random variables, Read. Fuzzy Sets Intell. Syst., 1993 (1993), 265–271. https://doi.org/10.1016/B978-1-4832-1450-4.50029-8 |
[9] | S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst., 24 (1987), 319–330. https://doi.org/10.1016/0165-0114(87)90030-3 doi: 10.1016/0165-0114(87)90030-3 |
[10] | B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 (2013), 119–141. https://doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003 |
[11] | S. Song, C. Wu, Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations, Fuzzy Sets Syst., 110 (2000), 55–67. https://doi.org/10.1016/S0165-0114(97)00399-0 doi: 10.1016/S0165-0114(97)00399-0 |
[12] | O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets Syst., 35 (1990), 389–396. https://doi.org/10.1016/0165-0114(90)90010-4 doi: 10.1016/0165-0114(90)90010-4 |
[13] | L. Ahmad, M. Farooq, S. Abdullah, Solving fourth order fuzzy differential equation by fuzzy Laplace transform, Ann. Fuzzy Math. Inform., 12 (2016), 449–468. |
[14] | M. Akram, M. Saqib, S. Bashir, T. Allahviranloo, An efficient numerical method for solving m-polar fuzzy initial value problems, Comput. Appl. Math., 41 (2022), 1–42. https://doi.org/10.1007/s40314-022-01841-2 doi: 10.1007/s40314-022-01841-2 |
[15] | M. Akram, T. Allahviranloo, W. Pedrycz, M. Ali, Methods for solving $LR$-bipolar fuzzy linear systems, Soft Comput., 25 (2021), 85–108. https://doi.org/10.1007/s00500-020-05460-z doi: 10.1007/s00500-020-05460-z |
[16] | M. Akram, M. Ali, T. Allahviranloo, A method for solving bipolar fuzzy complex linear systems with real and complex coefficients, Soft Comput., 26 (2022), 2157–2178. https://doi.org/10.1007/s00500-021-06672-7 doi: 10.1007/s00500-021-06672-7 |
[17] | T. Allahviranloo, Z. Gouyandeh, A. Armand, A full fuzzy method for solving differential equation based on Taylor expansion, J. Intell. Fuzzy Syst., 29 (2015), 1039–1055. https://doi.org/10.3233/IFS-151713 doi: 10.3233/IFS-151713 |
[18] | T. Allahviranloo, N. A. Kiani, M. Barkhordari, Toward the existence and uniqueness of solutions of second-order fuzzy ordinary differential equations, Inf. Sci., 179 (2009), 1207–1215. https://doi.org/10.1016/j.ins.2008.11.004 doi: 10.1016/j.ins.2008.11.004 |
[19] | T. Allahviranloo, N. Ahmady, E. Ahmady, Numerical solution of fuzzy differential equations by predictor-corrector method, Inf. Sci., 177 (2007), 1633–1647. https://doi.org/10.1016/j.ins.2006.09.015 doi: 10.1016/j.ins.2006.09.015 |
[20] | M. Friedman, M. Ma, A. Kandel, Numerical solution of fuzzy differential and integral equations, Fuzzy Sets Syst., 106 (1999), 35–48. https://doi.org/10.1016/S0165-0114(98)00355-8 doi: 10.1016/S0165-0114(98)00355-8 |
[21] | H. C. Wu, The fuzzy Riemann integral and its numerical integration, Fuzzy Sets Syst., 110 (2000), 1–25. https://doi.org/10.1016/S0165-0114(97)00353-9 doi: 10.1016/S0165-0114(97)00353-9 |
[22] | L. Y. Ji, C. L. You, Milstein method for solving fuzzy differential equation, Iran. J. Fuzzy Syst., 18 (2021), 129–141. https://doi.org/10.22111/IJFS.2021.6086 doi: 10.22111/IJFS.2021.6086 |
[23] | F. Karimi, T. Allahviranloo, S. M. Pishbin, S. Abbasbandy, Solving riccati fuzzy differential equations, New Math. Nat. Comput., 17 (2021), 29–43. https://doi.org/10.1142/S1793005721500022 doi: 10.1142/S1793005721500022 |
[24] | B. Laiate, E. Esmi, F. S. Pedro, L. C. Barros, Solutions of systems of linear fuzzy differential equations for a special class of fuzzy processes, in North American Fuzzy Information Processing Society Annual Conference, 258 (2021), 217–228. https://doi.org/10.1007/978-3-030-82099-2-20 |
[25] | R. Liu, M. Fečkan, J. Wang, D. O'Regan, Ulam type stability for first-order linear and nonlinear impulsive fuzzy ordinary differential equations, Int. J. Comput. Math., 99 (2022), 1281–1303. https://doi.org/10.1080/00207160.2021.1967940 doi: 10.1080/00207160.2021.1967940 |
[26] | M. Mazandarani, L. Xiu, A review on fuzzy differential equations, IEEE Access, 9 (2021), 62195–62211. https://doi.org/10.1109/ACCESS.2021.3074245 doi: 10.1109/ACCESS.2021.3074245 |
[27] | T. Allahviranloo, M. B. Ahmadi, Fuzzy Laplace transforms, Soft Comput., 14 (2010), 235–243. https://doi.org/10.1007/s00500-008-0397-6 |
[28] | S. Salahshour, T. Allahviranloo, Applications of fuzzy Laplace transforms, Soft Comput., 17 (2013), 145–158. https://doi.org/10.1007/s00500-012-0907-4 doi: 10.1007/s00500-012-0907-4 |
[29] | J. Pasha, M. A. Dulebenets, A. M. Fathollahi-Fard, G. Tian, Y. Y. Lau, P. Singh, et al., An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations, Adv. Eng. Inf., 48 (2021), 101299. https://doi.org/10.1016/j.aei.2021.101299 doi: 10.1016/j.aei.2021.101299 |
[30] | G. D'Angelo, R. Pilla, C. Tascini, S. Rampone, A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees, Soft Comput., 23 (2019), 11775–11791. https://doi.org/10.1007/s00500-018-03729-y doi: 10.1007/s00500-018-03729-y |
[31] | M. A. Dulebenets, An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal, Inf. Sci., 565 (2021), 390–421. https://doi.org/10.1016/j.ins.2021.02.039 doi: 10.1016/j.ins.2021.02.039 |
[32] | M. A. Dulebenets, J. Pasha, M. Kavoosi, O. F. Abioye, E. E. Ozguven, R. Moses, et al., Multiobjective optimization model for emergency evacuation planning in geographical locations with vulnerable population groups, J. Manage. Eng., 36 (2020), 04019043. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000730 doi: 10.1061/(ASCE)ME.1943-5479.0000730 |
[33] | M. A. Dulebenets, A delayed start parallel evolutionary algorithm for just-in-time truck scheduling at a cross-docking facility, Int. J. Prod. Econ., 212 (2019), 236–258. https://doi.org/10.1016/j.ijpe.2019.02.017 doi: 10.1016/j.ijpe.2019.02.017 |
[34] | Z. Z. Liu, Y. Wang, P. Q. Huang, AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Inf. Sci., 509 (2020), 400–419. https://doi.org/10.1016/j.ins.2018.06.063 doi: 10.1016/j.ins.2018.06.063 |
[35] | H. Zhao, C. Zhang, An online-learning-based evolutionary many-objective algorithm, Inf. Sci., 509 (2020), 1–21. https://doi.org/10.1016/j.ins.2019.08.069 doi: 10.1016/j.ins.2019.08.069 |
[36] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198 (1999), 62–86. https://doi.org/10.1016/s0076-5392(99)x8001-5 doi: 10.1016/s0076-5392(99)x8001-5 |
[37] | R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6 |
[38] | E. ElJaoui, S. Melliani, L. S. Chadli, Solving second-order fuzzy ordinary differential equations by the fuzzy Laplace transform method, Adv. Differ. Equations, 2015 (2015), 1–14. https://doi.org/10.1186/s13662-015-0414-x doi: 10.1186/s13662-015-0414-x |
[39] | H. F. M. Ali, A. K. Haydar, On fuzzy Laplace transform for fuzzy differential equations of the third order, J. Kerbala Univ., 11 (2013), 251–256. |
[40] | N. Salamat, M. Mustahsan, M. Saad Missen, Switching Point solution of second-order fuzzy ordinary differential equations using differential transformation method, Mathematics, 7 (2019), 231. https://doi.org/10.3390/math7030231 doi: 10.3390/math7030231 |