Research article

Heat transfer analysis: convective-radiative moving exponential porous fins with internal heat generation


  • Received: 25 June 2022 Revised: 27 July 2022 Accepted: 07 August 2022 Published: 11 August 2022
  • The efficiency, temperature distribution, and temperature at the tip of straight rectangular, growing and decaying moving exponential fins are investigated in this article. The influence of internal heat generation, surface and surrounding temperatures, convection-conduction, Peclet number and radiation-conduction is studied numerically on the efficiency, temperature profile, and temperature at the tip of the fin. Differential transform method is used to investigate the problem. It is revealed that thermal and thermo-geometric characteristics have a significant impact on the performance, temperature distribution, and temperature of the fin's tip.The results show that the temperature distribution of decaying exponential and rectangular fins is approximately $ 15 $ and $ 7\% $ higher than growing exponential and rectangular fins respectively. It is estimated that the temperature distribution of the fin increases by approximately $ 6\% $ when the porosity parameter is increased from $ 0.1 $ to $ 0.5 $. It is also observed that the decay exponential fin has better efficiency compared to growing exponential fin which offers significant advantages in mechanical engineering.

    Citation: Zia Ud Din, Amir Ali, Zareen A. Khan, Gul Zaman. Heat transfer analysis: convective-radiative moving exponential porous fins with internal heat generation[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11491-11511. doi: 10.3934/mbe.2022535

    Related Papers:

  • The efficiency, temperature distribution, and temperature at the tip of straight rectangular, growing and decaying moving exponential fins are investigated in this article. The influence of internal heat generation, surface and surrounding temperatures, convection-conduction, Peclet number and radiation-conduction is studied numerically on the efficiency, temperature profile, and temperature at the tip of the fin. Differential transform method is used to investigate the problem. It is revealed that thermal and thermo-geometric characteristics have a significant impact on the performance, temperature distribution, and temperature of the fin's tip.The results show that the temperature distribution of decaying exponential and rectangular fins is approximately $ 15 $ and $ 7\% $ higher than growing exponential and rectangular fins respectively. It is estimated that the temperature distribution of the fin increases by approximately $ 6\% $ when the porosity parameter is increased from $ 0.1 $ to $ 0.5 $. It is also observed that the decay exponential fin has better efficiency compared to growing exponential fin which offers significant advantages in mechanical engineering.



    加载中


    [1] M. Hatami, D. D. Ganji, M. Gorji-Bandpy, Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery, Energy Convers. Manage., 97 (2014), 26–41. https://doi.org/10.1016/j.enconman.2015.03.032 doi: 10.1016/j.enconman.2015.03.032
    [2] M. Ghazikhani, M. Hatami, B. Safari, The effect of alcoholic fuel additives on exergy parameters and emissions in a two-stroke gasoline engine, Arab. J. Sci. Eng., 39 (2014), 2117–2125. https://doi.org/10.1007/s13369-013-0738-3 doi: 10.1007/s13369-013-0738-3
    [3] M. Hatami, D. D. Ganji, Thermal performance of circular convective-radiative porous fins with different section shapes and materials, Energy Convers. Manage., 76 (2013), 185–193. https://doi.org/10.1016/j.enconman.2013.07.040 doi: 10.1016/j.enconman.2013.07.040
    [4] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transfer, 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
    [5] E. Cuce, P. M. Cuce, Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins with temperature-dependent thermal conductivity, J. Mech. Eng. Sci., 227 (2013), 1754–1760. https://doi.org/10.1177/0954406212469579 doi: 10.1177/0954406212469579
    [6] A. Y. Cengel, Introduction to Thermodynamics and Heat Transfer, Second Edition, McGraw-Hill Companies, 2008.
    [7] S. A. Atouei, K. Hosseinzadeh, M. Hatamic, S. E. Ghasemid, S. A. R. Sahebi, D. D. Ganji, Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods, Appl. Therm. Eng., 89 (2015), 299–305. https://doi.org/10.1016/j.applthermaleng.2015.05.084 doi: 10.1016/j.applthermaleng.2015.05.084
    [8] K. Hosseinzadeh, E. Montazer, M. B. Shafii, A. R. D. Ganji, Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles, J. Energy Storage, 34 (2021), 102177. https://doi.org/10.1016/j.est.2020.102177 doi: 10.1016/j.est.2020.102177
    [9] M. Hatami, D. D. Ganji, Optimization of the longitudinal fins with different geometries for increasing the heat transfer, in ISER 10th International Conference, Kuala Lumpur, Malaysia, 2015.
    [10] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transfer, 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
    [11] B. Kundu, D. Bhanja, K. S. Lee, A model on the basis of analytics for computing maximum heat transfer in porous fins, Int. J. Heat Mass Transfer, 55 (2012), 7611–7622. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.069 doi: 10.1016/j.ijheatmasstransfer.2012.07.069
    [12] Z. Din, A. Ali, S. Ullah, G. Zaman, Investigation of heat transfer from convective and radiative stretching/shrinking rectangular fins, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/1026698
    [13] W. Ahmad, K. S. Syed, M. Ishaq, A. Hassan, Z. Iqbal, Numerical study of conjugate heat transfer in a double-pipe with exponential fins using DGFEM, Appl. Therm. Eng., 111 (2017), 1184–1201. https://doi.org/10.1016/j.applthermaleng.2016.09.171 doi: 10.1016/j.applthermaleng.2016.09.171
    [14] M. M. Rashidi, T. Hayat, T. Keimanesh, H. Yousefian, A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method, Heat Transfer Asian Res., 42 (2013), 31–45. https://doi.org/10.1002/htj.21030 doi: 10.1002/htj.21030
    [15] E. Erfani, M. M. Rashidi, A. B. Parsa. The modified differential transform method for solving off-centered stagnation flow toward a rotating disc, Int. J. Comput. Methods, 7 (2010), 655–670. https://doi.org/10.1142/S0219876210002404
    [16] Y. Huang, X. Li, Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method, Int. J. Heat Mass Transfer, 150 (2020), 119303. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119303 doi: 10.1016/j.ijheatmasstransfer.2019.119303
    [17] M. M. Rashidi, E. Erfani, New analytical method for solving Burgers and nonlinear heat transfer equations and comparison with HAM, Comput. Phys. Commun., 180 (2009), 1539–1544.
    [18] S. Panda, A. Bhowmik, R. Das, R. Repaka, S. C. Martha, Application of Homotopy analysis method and inverse solution of a rectangular wet fin, Energy Convers. Manage., 80 (2014), 303–318. https://doi.org/10.1016/j.cpc.2009.04.009 doi: 10.1016/j.cpc.2009.04.009
    [19] R. K. Singla, R. Das, Application of decomposition method and inverse prediction of parameters in a moving fin, Energy Convers. Manage., 84 (2014), 268–281. https://doi.org/10.1016/j.enconman.2014.04.045 doi: 10.1016/j.enconman.2014.04.045
    [20] C. Y. Zhang, X. F. Li, Temperature distribution of conductive-convective-radiative fins with temperature-dependent thermal conductivity, Int. Comm. Heat Mass Transfer, 117 (2020), 104799. https://doi.org/10.1016/j.icheatmasstransfer.2020.104799 doi: 10.1016/j.icheatmasstransfer.2020.104799
    [21] S. W. Sun, X. F. Li, Exact solution of the nonlinear fin problem with exponentially temperature-dependent thermal conductivity and heat transfer coefficient, Pramana J. Phys., 94 (2020), 1–10. https://doi.org/10.1007/s12043-020-01971-4 doi: 10.1007/s12043-020-01971-4
    [22] A. K. Asl, S. Hossainpour, M. M. Rashidi, M. A. Sheremet, Z. Yang, Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure, Int. J. Heat Mass Transfer, 133 (2019), 729–744. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.156 doi: 10.1016/j.ijheatmasstransfer.2018.12.156
    [23] S. Maalej, A. Zayoud, I. Abdelaziz, I. Saad, M. C. Zaghdoudi, Thermal performance of finned heat pipe system for Central Processing Unit cooling, Energy Convers. Manage., 218 (2020), 112977. https://doi.org/10.1016/j.enconman.2020.112977 doi: 10.1016/j.enconman.2020.112977
    [24] A. A. Joneidi, D. D. Ganji, M. Babaelahi, Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, Int. Commun. Heat Mass Transfer, 36 (2009), 757–762. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.020 doi: 10.1016/j.icheatmasstransfer.2009.03.020
    [25] C. H. Chiu, C. K. Chen, Applications of Adomian decomposition procedure to the analysis of convective radiative fins, J. Heat Transfer, 125 (2003), 312–316. https://doi.org/10.1115/1.1532012 doi: 10.1115/1.1532012
    [26] D. Lesnic, P. J. Heggs, A decomposition method for power-law fin-type problems, Int. Commun. Heat Mass Transfer, 31 (2004), 673–682. https://doi.org/10.1016/S0735-1933(04)00054-5 doi: 10.1016/S0735-1933(04)00054-5
    [27] R. Das, B. Kundu, Prediction of heat-generation and electromagnetic parameters from temperature response in porous fins, J. Thermophys. Heat Transfer, 35 (2021), 761–769. https://doi.org/10.2514/1.T6224 doi: 10.2514/1.T6224
    [28] R. Das, B. Kundu, Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information, Int. Commun. Heat Mass Transfer, 127 (2021), 105497. https://doi.org/10.1016/j.icheatmasstransfer.2021.105497 doi: 10.1016/j.icheatmasstransfer.2021.105497
    [29] D. Bhanja, B. Kundu, Thermal analysis of a constructal T-shaped porous fin with radiation effects, Int. J. Refrig., 31 (2011), 337–352. https://doi.org/10.1016/j.ijrefrig.2011.04.003 doi: 10.1016/j.ijrefrig.2011.04.003
    [30] B. Kundu, D. Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrig., 31 (2011), 1483–1496. https://doi.org/10.1016/j.ijrefrig.2010.06.011 doi: 10.1016/j.ijrefrig.2010.06.011
    [31] R. Das, B. Kundu, Prediction of heat generation in a porous fin from surface temperature, J. Thermophys. Heat Transfer, 31 (2017), 781–790. https://doi.org/10.2514/1.T5098 doi: 10.2514/1.T5098
    [32] R. Das, Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin, Energy Convers. Manage., 87 (2014), 96–106. https://doi.org/10.1016/j.enconman.2014.06.096 doi: 10.1016/j.enconman.2014.06.096
    [33] R. Das, D. K. Prasad. Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm, Swarm Evol. Comput., 23 (2015), 27–39. https://doi.org/10.1016/j.swevo.2015.03.001
    [34] B. Kundu, S. J. Yook, An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects-analytical and unified assessment, Appl. Math. Comput., 402 (2021), 126124. https://doi.org/10.1016/j.amc.2021.126124 doi: 10.1016/j.amc.2021.126124
    [35] G. A. Oguntala, R. A. Abd-Alhameed, G. M. Sobamowo, N. Eya, Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component, Therm. Sci. Eng. Prog., 6 (2018), 177–185. https://doi.org/10.1016/j.tsep.2017.10.019
    [36] M. A. Vatanparast, S. Hossainpour, A. Keyhani-Asl, S. Forouzi, Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins, Int. Commun. Heat Mass Transfer, 111 (2020), 104446. https://doi.org/10.1016/j.icheatmasstransfer.2019.104446 doi: 10.1016/j.icheatmasstransfer.2019.104446
    [37] M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, Int. J. Therm. Sci., 55 (2012), 69–79. https://doi.org/10.1016/j.ijthermalsci.2011.12.019 doi: 10.1016/j.ijthermalsci.2011.12.019
    [38] Z. U. Din, A. Ali, G. Zaman, Entropy generation in moving exponential porous fins with natural convection, radiation and internal heat generation, Arch. Appl. Mech., 92 (2022), 933–944. https://doi.org/10.1007/s00419-021-02081-2 doi: 10.1007/s00419-021-02081-2
    [39] Z. U. Din, A. Ali, M. D. la Sen, G. Zaman, Entropy generation from convective-radiative moving exponential porous fins with variable thermal conductivity and internal heat generations, Sci. Rep., 12 (2022), 1791. https://doi.org/10.1038/s41598-022-05507-1
    [40] M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation, Energy Convers. Manage., 74 (2013), 9–16. https://doi.org/10.1016/j.enconman.2013.04.034 doi: 10.1016/j.enconman.2013.04.034
    [41] M. Hatami, D. D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method, Energy Convers. Manage., 78 (2014), 347–358. https://doi.org/10.1016/j.enconman.2013.10.063 doi: 10.1016/j.enconman.2013.10.063
    [42] M. Turkyilmazoglu, Thermal performance of optimum exponential fin profiles subjected to a temperature jump, Int. J. Numer. Methods Heat Fluid Flow, 32 (2021), 1002–1011. https://doi.org/10.1108/HFF-02-2021-0132 doi: 10.1108/HFF-02-2021-0132
    [43] A. R. A. Khaled, Thermal characterizations of exponential fin systems, Math. Probl. Eng., (2010), 765729. https://doi.org/10.1155/2010/765729
    [44] M. F. Najafabadi, H. T. Rostami, K. Hosseinzadeh, D. D. Ganji, Thermal analysis of a moving fin using the radial basis function approximation, Heat Transfer, 50 (2021), 7553–7567. https://doi.org/10.1002/htj.22242 doi: 10.1002/htj.22242
    [45] S. Hosseinzadeh, K. Hosseinzadeh, A. Hasibi, D. D. Ganji, Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections, Case Stud. Therm. Eng., 30 (2022), 101757. https://doi.org/10.1016/j.csite.2022.101757 doi: 10.1016/j.csite.2022.101757
    [46] M. A. E. Moghaddam, M. R. H. S. Abandani, K. Hosseinzadeh, M. B. Shafii, D. D. Ganji, Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution, Theor. Appl. Mech. Lett., (2022), 100332. https://doi.org/10.1016/j.taml.2022.100332
    [47] B. Jalili, N. Aghaee, P. Jalili, D. D. Ganji, Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid, Case Stud. Therm., (2022), 102086. https://doi.org/10.1016/j.csite.2022.102086
    [48] B. Jalili, S. Sadighi, P. Jalili, D. D. Ganji, Characteristics of ferrofluid flow over a stretching sheet with suction and injection, Case Stud. Therm., 14 (2019), 100470. https://doi.org/10.1016/j.csite.2022.102086 doi: 10.1016/j.csite.2022.102086
    [49] B. Jalili, S. Sadighi, P. Jalili, D. D. Ganji, Effect of magnetic and boundary parameters on flow characteristics analysis of micropolar ferrofluid through the shrinking sheet with effective thermal conductivity, Chin. J. Phys., 71 (2021), 136–150. https://doi.org/10.1016/j.cjph.2020.02.034 doi: 10.1016/j.cjph.2020.02.034
    [50] P. Jalili, D. D. Ganji, B. Jalili, D. D. Ganji, Evaluation of electro-osmotic flow in a nanochannel via semi-analytical method, Therm. Sci., 16 (2012), 1297–1302. http://DOI:10.2298/TSCI1205297J doi: 10.2298/TSCI1205297J
    [51] M. Turkyilmazoglu, Efficiency of heat and mass transfer in fully wet porous fins: exponential fins versus straight fins, Int. J. Refrig., 46 (2014), 158–164. https://doi.org/10.1016/j.ijrefrig.2014.04.011 doi: 10.1016/j.ijrefrig.2014.04.011
    [52] B. Kundu, K. S. Lee, Analytic solution for heat transfer of wet fins on account of all nonlinearity effects, Energy, 41 (2012), 354–367. https://doi.org/10.1016/j.energy.2012.03.004 doi: 10.1016/j.energy.2012.03.004
    [53] R. das, K. T. Ooi, Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement, Energy Convers. Manage., 66 (2013), 211–219. https://doi.org/10.1016/j.enconman.2012.10.019 doi: 10.1016/j.enconman.2012.10.019
    [54] M. Torabi A. Aziz, K. Zhang, A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities, Energies, 51 (2013), 243–256. https://doi.org/10.1016/j.energy.2012.11.052 doi: 10.1016/j.energy.2012.11.052
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1609) PDF downloads(62) Cited by(6)

Article outline

Figures and Tables

Figures(11)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog