Research article Special Issues

Prescribed-time control of stochastic high-order nonlinear systems

  • Received: 19 July 2022 Revised: 29 July 2022 Accepted: 07 August 2022 Published: 09 August 2022
  • In this paper, the prescribed-time stabilization is studied for stochastic high-order nonlinear systems. Different from the previous research results on stochastic high-order nonlinear systems where only asymptotic stabilization or finite-time stabilization is considered, this paper proposes a new design to achieve stabilization in the prescribed-time. Specifically, the designed controller can ensure that the closed-loop system has an almost surely unique strong solution and the equilibrium of the closed-loop system is prescribed-time mean-square stable. The design method is verified by an example.

    Citation: Hui Wang. Prescribed-time control of stochastic high-order nonlinear systems[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11399-11408. doi: 10.3934/mbe.2022531

    Related Papers:

  • In this paper, the prescribed-time stabilization is studied for stochastic high-order nonlinear systems. Different from the previous research results on stochastic high-order nonlinear systems where only asymptotic stabilization or finite-time stabilization is considered, this paper proposes a new design to achieve stabilization in the prescribed-time. Specifically, the designed controller can ensure that the closed-loop system has an almost surely unique strong solution and the equilibrium of the closed-loop system is prescribed-time mean-square stable. The design method is verified by an example.



    加载中


    [1] Z. G. Pan, T. Basar, Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems, IEEE Trans. Autom. Control, 43 (1998), 1066–1083. https://doi.org/10.1109/9.704978 doi: 10.1109/9.704978
    [2] Z. G. Pan, T. Basar, Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion, SIAM J. Control Optim., 37 (1999), 957–995. https://doi.org/10.1137/S0363012996307059 doi: 10.1137/S0363012996307059
    [3] Z. G. Pan, Y. Liu, S. Shi, Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics, Sci. China, 44 (2001), 292–308. https://doi.org/10.1007/BF02714717 doi: 10.1007/BF02714717
    [4] H. Deng, M. Krsti$\acute{c}$, Stochastic nonlinear stabilization, part i: a backstepping design, Syst. Control Lett., 32 (1997), 143–150. https://doi.org/10.1016/S0167-6911(97)00068-6 doi: 10.1016/S0167-6911(97)00068-6
    [5] H. Deng, M. Krsti$\acute{c}$, Output-feedback stochastic nonlinear stabilization, IEEE Trans. Autom. Control, 44 (1999), 328–333. https://doi.org/10.1109/9.746260 doi: 10.1109/9.746260
    [6] H. Deng, M. Krsti$\acute{c}$, Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance, Syst. Control Lett., 39 (2000), 173–182. https://doi.org/10.1016/S0167-6911(99)00084-5 doi: 10.1016/S0167-6911(99)00084-5
    [7] H. Deng, M. Krsti$\acute{c}$, R. J. Williams, Stabilization of stochastic nonlinear driven by noise of unknown covariance, IEEE Trans. Autom. Control, 46 (2001), 1237–1253. https://doi.org/10.1109/9.940927 doi: 10.1109/9.940927
    [8] M. Krsti$\acute{c}$, H. Deng, Stabilization of Uncertain Nonlinear Systems, Springer, New York, 1998.
    [9] W. Q. Li, L. Liu, G. Feng, Cooperative control of multiple nonlinear benchmark systems perturbed by second-order moment processes, IEEE Trans. Cybern., 50 (2020), 902–910. https://doi.org/10.1109/TCYB.2018.2869385 doi: 10.1109/TCYB.2018.2869385
    [10] W. Q. Li, M. Krsti$\acute{c}$, Stochastic adaptive nonlinear control with filterless least-squares, IEEE Trans. Autom. Control, 66 (2021), 3893–3905. https://doi.org/10.1109/TAC.2020.3027650 doi: 10.1109/TAC.2020.3027650
    [11] W. Q. Li, X. X. Yao, M. Krsti$\acute{c}$, Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty, Automatica, 120 (2020), 109112. https://doi.org/10.1016/j.automatica.2020.109112 doi: 10.1016/j.automatica.2020.109112
    [12] W. Q. Li, M. Krsti$\acute{c}$, Mean-nonovershooting control of stochastic nonlinear systems, IEEE Trans. Autom. Control, 66 (2021), 5756–5771. https://doi.org/10.1109/TAC.2020.3042454 doi: 10.1109/TAC.2020.3042454
    [13] X. J. Xie, N. Duan, Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system, IEEE Trans. Autom. Control, 55 (2010), 1197–1202. https://doi.org/10.1109/TAC.2010.2043004 doi: 10.1109/TAC.2010.2043004
    [14] X. J. Xie, J. Tian, State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics, Int. J. Robust Nonlinear, 17 (2007), 1343–1362. https://doi.org/10.1002/rnc.1177 doi: 10.1002/rnc.1177
    [15] W. Q. Li, X. J. Xie, S. Y. Zhang, Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions, SIAM J. Control Optim., 49 (2011), 1262–1282. https://doi.org/10.1137/100798259 doi: 10.1137/100798259
    [16] W. Q. Li, L. Liu, G. Feng, Output tracking of stochastic nonlinear systems with unstable linearization, Int. J. Robust Nonlinear, 28 (2018), 466–477. https://doi.org/10.1002/rnc.3877 doi: 10.1002/rnc.3877
    [17] R. H. Cui, X. J. Xie, Adaptive state-feedback stabilization of state-constrained stochastic high-order nonlinear systems, Sci. China Inf. Sci., 64 (2021), 200203. https://linkspringer.53yu.com/article/10.1007/s11432-021-3293-0
    [18] Y. D. Song, Y. J. Wang, J. C. Holloway, M. Krsti$\acute{c}$, Time-varying feedback for robust regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243–251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008
    [19] Y. D. Song, Y. J. Wang, M. Krsti$\acute{c}$, Time-varying feedback for stabilization in prescribed finite time, Int. J. Robust Nonlinear, 29 (2019), 618–633. https://doi.org/10.1002/rnc.4084 doi: 10.1002/rnc.4084
    [20] Y. J. Wang, Y. D. Song, D. J. Hill, M. Krsti$\acute{c}$, Prescribed finite time consensus and containment control of networked multi-agent systems, IEEE Trans. Cybern., 49 (2019), 1138–1147. https://doi.org/10.1109/TCYB.2017.2788874 doi: 10.1109/TCYB.2017.2788874
    [21] J. Holloway, M. Krsti$\acute{c}$, Prescribed-time observers for linear systems in observer canonical form, IEEE Trans. Autom. Control, 64 (2019), 3905–3912. https://doi.org/10.1109/TAC.2018.2890751 doi: 10.1109/TAC.2018.2890751
    [22] J. Holloway, M. Krsti$\acute{c}$, Prescribed-time output feedback for linear systems in controllable canonical form, Automatica, 107 (2019), 77–85. https://doi.org/10.1016/j.automatica.2019.05.027 doi: 10.1016/j.automatica.2019.05.027
    [23] P. Krishnamurthy, F. Khorrami, M. Krsti$\acute{c}$, Robust adaptive prescribed-time stabilization via output feedback for uncertain nonlinear strict-feedback-like systems, Eur. J. Control, 55 (2020), 14–23. https://doi.org/10.1016/j.ejcon.2019.09.005 doi: 10.1016/j.ejcon.2019.09.005
    [24] W. Q. Li, M. Krsti$\acute{c}$, Stochastic nonlinear prescribed-time stabilization and inverse optimality, IEEE Trans. Autom. Contr., 67 (2022), 1179–1193. https://doi.org/10.1109/TAC.2021.3061646 doi: 10.1109/TAC.2021.3061646
    [25] W. Q. Li, M. Krsti$\acute{c}$, Prescribed-time control of stochastic nonlinear systems with reduced control effort, J. Syst. Sci. Complex., 34 (2021), 1782–1800. https://doi.org/10.1007/s11424-021-1217-7 doi: 10.1007/s11424-021-1217-7
    [26] W. Q. Li, M. Krsti$\acute{c}$, Prescribed-time output-feedback control of stochastic nonlinear systems, IEEE Trans. Autom. Control, 68 (2023). https://doi.org/10.1109/TAC.2022.3151587 doi: 10.1109/TAC.2022.3151587
    [27] W. Q. Li, L. Liu, G. Feng, Distributed output-feedback tracking of multiple nonlinear systems with unmeasurable states, IEEE Trans. Syst. Man Cybern., 51 (2021), 477–486. https://doi.org/10.1109/TSMC.2018.2875453 doi: 10.1109/TSMC.2018.2875453
    [28] X. D. Li, D. W. Ho, J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [29] X. D. Li, S. J. Song, J. H. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [30] X. D. Li, D. X. Peng, J. D. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [31] R. H. Cui, X. J. Xie, Finite-time stabilization of output-constrained stochastic high-order nonlinear systems with high-order and low-order nonlinearities, Automatica, 136 (2022), 110085. https://doi.org/10.1016/j.automatica.2021.110085 doi: 10.1016/j.automatica.2021.110085
    [32] R. H. Cui, X. J. Xie, Finite-time stabilization of stochastic low-order nonlinear systems with time-varying orders and FT-SISS inverse dynamics, Automatica, 125 (2021), 109418. https://doi.org/10.1016/j.automatica.2020.109418 doi: 10.1016/j.automatica.2020.109418
    [33] R. H. Cui, X. J. Xie, Output feedback stabilization of stochastic planar nonlinear systems with output constraint, Automatica, 143 (2022), 110471. https://doi.org/10.1016/j.automatica.2022.110471 doi: 10.1016/j.automatica.2022.110471
    [34] R. H. Cui, X. J. Xie, Adaptive state-feedback stabilization of state-constrained stochastic high-order nonlinear systems, Sci. China Inf. Sci., 64 (2021), 1–11. https://doi.org/10.1007/s11432-021-3293-0 doi: 10.1007/s11432-021-3293-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1878) PDF downloads(145) Cited by(3)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog