Research article Special Issues

A study on the factors influencing the transfer of COVID-19 severe illness patients out of the ICU based on generalized linear mixed effect model

  • These authors contributed equally.
  • Received: 22 April 2022 Revised: 09 July 2022 Accepted: 14 July 2022 Published: 25 July 2022
  • The clinical data of 76 severe illness patients with novel coronavirus SARS-CoV-2 from July to August, 2020 admitted to the ICU Intensive Care Unit ward in a hospital in Urumqi were collected in the paper. By using the Laplace approximation parameter estimation method based on maximum likelihood estimation, the generalized linear mixed effect model (GLMM) was established to analyze the characteristics of clinical indicators in critical patients, and to screen the main influencing factors of COVID-19 critical patients' inability to be transferred out of the ICU in a short time: age, C-reactive protein, serum creatinine and lactate dehydrogenase.

    Citation: Zemin Luan, Zhaoxia Yu, Ting Zeng, Rui Wang, Maozai Tian, Kai Wang. A study on the factors influencing the transfer of COVID-19 severe illness patients out of the ICU based on generalized linear mixed effect model[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10602-10617. doi: 10.3934/mbe.2022495

    Related Papers:

  • The clinical data of 76 severe illness patients with novel coronavirus SARS-CoV-2 from July to August, 2020 admitted to the ICU Intensive Care Unit ward in a hospital in Urumqi were collected in the paper. By using the Laplace approximation parameter estimation method based on maximum likelihood estimation, the generalized linear mixed effect model (GLMM) was established to analyze the characteristics of clinical indicators in critical patients, and to screen the main influencing factors of COVID-19 critical patients' inability to be transferred out of the ICU in a short time: age, C-reactive protein, serum creatinine and lactate dehydrogenase.



    加载中


    [1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 doi: 10.1016/S0140-6736(20)30183-5
    [2] CDC COVID-19 Response Team, Severe outcomes among patients with coronavirus disease 2019 (COVID-19)–-United States, February 12– March 16, 2020, MMWR Morb Mortal Wkly Rep, 69 (2020), 343–346. https://doi.org/10.15585/mmwr.mm6912e2 doi: 10.15585/mmwr.mm6912e2
    [3] K. Liu, Y. Y. Fang, Y. Deng, W. Liu, M. F. Wang, J. P. Ma, et al., Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province, Chin. Med. J. (Engl.), 33 (2020), 1025–1031. https://doi.org/10.1097/CM9.0000000000000744 doi: 10.1097/CM9.0000000000000744
    [4] H. A. Rothan, S. N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun., (2020), 102433. https://doi.org/10.1016/j.jaut.2020.102433
    [5] National Health Commission of the People's Republic of China, Announcement of the National Health Commission of the People's Republic of China (No. 1, 2020). (2020-01-20), Available from: http://www.nhc.gov.cn/xcs/zhengcwj/202001/44a3b8245e8049d2837a4f27529cd386.shtml. Accessed date: April 1, 2020.
    [6] J. F. Chan, S. Yuan, K. H. Kok, K. To, H. Chu, J, Yang, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet, 395 (2020), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9 doi: 10.1016/S0140-6736(20)30154-9
    [7] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
    [8] J. Li, G. Xu, H. Yu, X. Peng, Y. Luo, C. Cao, Clinical characteristics and outcomes of 74 patients with severe or critical COVID-19, Am. J. Med. Sci., 360 (2020), 229–235. https://doi.org/10.1016/j.amjms.2020.05.040 doi: 10.1016/j.amjms.2020.05.040
    [9] W. Yang, Q. Cao, L. Qin, X. Wang, Z. Cheng, A. Pan, et al., Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China, J. Infect., 80 (2020), 388–393. https://doi.org/10.1016/j.jinf.2020.02.016 doi: 10.1016/j.jinf.2020.02.016
    [10] Y. Xu, J. Dong, W. An, X. Lv, X. Yin, J. Zhang, et al., Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2, J. Infect., 80 (2020), 394–400. https://doi.org/10.1016/j.jinf.2020.02.017 doi: 10.1016/j.jinf.2020.02.017
    [11] Z. Chen, J. Hu, L. Liu, Y. Zhang, D. Liu, M. Xiong, et al., Clinical characteristics of patients with severe and critical COVID-19 in Wuhan: A single-center, retrospective study, Infect. Dis. Ther., 10 (2021), 1–18. https://doi.org/10.1007/s40121-020-00379-2 doi: 10.1007/s40121-020-00379-2
    [12] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet, 395 (2020), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3 doi: 10.1016/S0140-6736(20)30566-3
    [13] J. Tian, X. Yuan, J. Xiao, Q. Zhong, C. Yang, B. Liu, et al., Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study, Lancet Oncol., 21 (2020), 893–903. https://doi.org/10.1016/S1470-2045(20)30309-0 doi: 10.1016/S1470-2045(20)30309-0
    [14] G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, et al., Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region Italy, JAMA, 323 (2020), 1574–1581. https://doi.org/10.1001/jama.2020.5394 doi: 10.1001/jama.2020.5394
    [15] M. G. Argenziano, S. L. Bruce, C. L. Slater, J. R. Tiao, M. R. Baldwin, R. G. Barr, et al., Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series, BMJ, 369 (2020), m1996. https://doi.org/10.1136/bmj.m1996 doi: 10.1136/bmj.m1996
    [16] X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir. Med., 8 (2020), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5 doi: 10.1016/S2213-2600(20)30079-5
    [17] National Health Committee of the People's Republic of China, The Diagnostic Criteria of COVID-19 Diagnosis and Treatment Protocol (Trial Edition 8). [2020-08-19], Available from: http://www.nhc.gov.cn/yzygj/s7653p/202008/0a7bdf12bd4b46e5bd28ca7f9a7f5e5a.shtml.
    [18] R. Krishnapuram, J. M. Keller, The possibilistic C-means algorithm: insights and recommendations, IEEE Trans. Fuzzy Syst., 4 (2002), 385–393. https://doi.org/10.1109/91.531779 doi: 10.1109/91.531779
    [19] R. Krishnapuram, J. M. Keller, A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 1 (2002), 98–110. https://doi.org/10.1109/91.227387 doi: 10.1109/91.227387
    [20] F. Carvalho, C. P. Tenorio, N. Junior, Partitional fuzzy clustering methods based on adaptive quadratic distances, Fuzzy Sets Syst., 157 (2006), 2833–2857. https://doi.org/10.1016/j.fss.2006.06.004 doi: 10.1016/j.fss.2006.06.004
    [21] N. E. Breslow, D. G. Clayton, Approximate inference in generalized linear mixed models, J. Am. Stat. Assoc., 88 (1993), 9–25. https://doi.org/10.2307/2290687
    [22] N. E. Breslow, X. Lin, Bias correction in generalised linear mixed models with a single component of dispersion, Biometrika, 82 (1995), 81–91. https://doi.org/10.1093/biomet/82.1.81 doi: 10.1093/biomet/82.1.81
    [23] S. W. Raudenbush, M. Yang, M. Yosef, Maximum likelihood for generalized linear models with nested random effects via high-Order, multivariate laplace approximation, J. Comput. Graphical Stat., 9 (2000), 141–157. https://doi.org/10.2307/1390617 doi: 10.2307/1390617
    [24] D. Bates, M. Maechler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4, J. Stat. Software, 67 (2015), 1–48. https://doi.org/10.18637/jss.v067.i01 doi: 10.18637/jss.v067.i01
    [25] M. E. Brooks, K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, et al., glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, R J., 9 (2017), 378–400. https://doi.org/10.32614/rj-2017-066 doi: 10.32614/rj-2017-066
    [26] P. E. Shrout, J. L. Fleiss, Intraclass correlations: uses in assessing rater reliability, Psychol. Bull., 86 (1979), 420–428. https://doi.org/10.1037/0033-2909.86.2.420 doi: 10.1037/0033-2909.86.2.420
    [27] J. Twisk, Applied Multilevel Analysis, Cambridge University Press, 2006. https://doi.org/10.1017/cbo9780511610806
    [28] P. K. Andersen, R. D. Gill, Cox's regression model for counting pro- cesses: A large sample study, Ann. Stat., 10 (1982), 1100–1120. https://doi.org/10.1214/aos/1176345976 doi: 10.1214/aos/1176345976
    [29] T. Fleming, D. Harrington, Counting Processes and Survival Analysis, Wiley, New York, (1991), 343–346.
    [30] P. Andersen, O. Borgan, R. Gill, N. Keiding, Statistical Models Based on Counting Processes, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4348-9
    [31] D. Ludecke, M. Ben-Shachar, I. Patil, P. Waggoner, D. Makowski, Performance: An R package for assessment, comparison and testing of statistical Models, J. Open Source Software, 6 (2021), 3139. https://doi.org/10.21105/joss.03139 doi: 10.21105/joss.03139
    [32] H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control, 19 (1974), 716–723. https://doi.org/10.1109/tac.1974.1100705 doi: 10.1109/tac.1974.1100705
    [33] A. Gelman, Y. Su, arm: Data analysis using regression and multilevel/hierarchical models, R package version 1.12-2, 2021.
    [34] J. Fox, S. Weisberg, An R Companion to Applied Regression, 3rd edition, Thousand Oaks CA: Sage, 2019.
    [35] T. M. Therneau, P. M. Grambsch, Modeling Survival Data: Extending the Cox Model, Springer, New York, 2000.
    [36] Y. Liu, B. Mao, S. Liang, J. Yang, H. Lu, Y. Chai, et al., Association between age and clinical characteristics and outcomes of COVID-19, Eur. Respir. J., 55 (2020), 2001112. https://doi.org/10.1183/13993003.01112-2020 doi: 10.1183/13993003.01112-2020
    [37] L. Wang, W. He, X. Yu, D. Hu, M. Bao, H. Liu, et al., Coronavirus disease 2019 in elderly patients: characteristics andprognostic factors based on 4-week follow-up, J. Infect., 80 (2020), 639–645. https://doi.org/10.1016/j.jinf.2020.03.019 doi: 10.1016/j.jinf.2020.03.019
    [38] J. Lian, X. Jin, S. Hao, H. Cai, S. Zhang, L. Zheng, et al., Analysis of epidemiological and clinical features in older patients with Coronavirus disease 2019 (COVID-19) outside Wuhan, Clin. Infect. Dis., 71 (2020), 740–747. https://doi.org/10.1093/cid/ciaa242 doi: 10.1093/cid/ciaa242
    [39] G. Ye, Z. Pan, Y. Pan, Q. Deng, L. Chen, J. Li, et al., Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation, J. Infect., 80 (2020), e14–17. https://doi.org/10.1016/j.jinf.2020.03.001 doi: 10.1016/j.jinf.2020.03.001
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1901) PDF downloads(93) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog