Research article

A combined functional dorsal nerve model of the foot


  • Received: 04 April 2022 Revised: 17 May 2022 Accepted: 25 May 2022 Published: 24 June 2022
  • The nerves in the skin surface of the foot are comprised of unmyelinated smaller somatic nerves and larger myelinated sensory nerves. Current diagnostic methods are unable to evaluate combined nerve conduction velocity (NCV) from both unmyelinated smaller somatic nerve (USSN) and myelinated larger nerves (MLN) respectively. Computational models may provide an alternative tool to determine the NCV of the combined nerve. Therefore, a combined functional dorsal nerve model (CFDNM) of the various dorsal nerves along with its associated nerve ending of the human foot is proposed and constructed. The combined dorsal nerve model consists of synthetic USSN (SUSSN) and dorsal MLN of the foot. The unmyelinated as well as myelinated electrophysiological nerve models were used to simulate selected SUSSN and MLN of the foot by injecting an external stimulus at the most distal part of SUSSN of the foot through the use of bidomain model. Results from our work demonstrated that the action potential propagated from the most distal part to proximal part of distinct dorsal nerves of the foot, e.g., the simulated NCV of the combined intermediate dorsal cutaneous nerve (IDCN) of the foot was 28.4 m s-1. The CFDNM will provide a vital tool for diagnosis initially small fibre neuropathy (SFN) by computing NCV in the prospective studies.

    Citation: Muhammad Z. Ul Haque, Peng Du, Leo K. Cheng. A combined functional dorsal nerve model of the foot[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 9321-9334. doi: 10.3934/mbe.2022433

    Related Papers:

  • The nerves in the skin surface of the foot are comprised of unmyelinated smaller somatic nerves and larger myelinated sensory nerves. Current diagnostic methods are unable to evaluate combined nerve conduction velocity (NCV) from both unmyelinated smaller somatic nerve (USSN) and myelinated larger nerves (MLN) respectively. Computational models may provide an alternative tool to determine the NCV of the combined nerve. Therefore, a combined functional dorsal nerve model (CFDNM) of the various dorsal nerves along with its associated nerve ending of the human foot is proposed and constructed. The combined dorsal nerve model consists of synthetic USSN (SUSSN) and dorsal MLN of the foot. The unmyelinated as well as myelinated electrophysiological nerve models were used to simulate selected SUSSN and MLN of the foot by injecting an external stimulus at the most distal part of SUSSN of the foot through the use of bidomain model. Results from our work demonstrated that the action potential propagated from the most distal part to proximal part of distinct dorsal nerves of the foot, e.g., the simulated NCV of the combined intermediate dorsal cutaneous nerve (IDCN) of the foot was 28.4 m s-1. The CFDNM will provide a vital tool for diagnosis initially small fibre neuropathy (SFN) by computing NCV in the prospective studies.



    加载中


    [1] H. Ellis, The nerves of the leg and foot, Anaesth. Intensive Care Med., 11 (2010), 95-97. https://doi.org/10.1016/j.mpaic.2009.12.007 doi: 10.1016/j.mpaic.2009.12.007
    [2] T. Arakawa, S. Sekiya, K. Kumaki, T. Terashima, Ramification pattern of the deep branch of the lateral plantar nerve in the human foot, Ann. Anat. Anat. Anz., 187 (2005), 287-296. https://doi.org/10.1016/j.aanat.2005.02.009 doi: 10.1016/j.aanat.2005.02.009
    [3] S. Bianchi, C. Martinoli, Foot, in Ultrasound of The Musculoskeletal System, Medical Radiology, Springer, Berlin, Heidelberg, (2007), 835-888. https://doi.org/10.1007/978-3-540-28163-4_17
    [4] L. Ren, Z. Qian, L. Ren, Biomechanics of musculoskeletal system and its biomimetic implications: A review, J. Bionic Eng., 11 (2014), 159-175. https://doi.org/10.1016/S1672-6529(14)60033-0 doi: 10.1016/S1672-6529(14)60033-0
    [5] P. M. Kennedy, J. T. Inglis, Distribution and behaviour of glabrous cutaneous receptors in the human foot sole, J. Physiol., 53 (2002), 995-1002. https://dx.doi.org/10.1113%2Fjphysiol.2001.013087
    [6] M. Edmonds, C. Manu, P. Vas, The current burden of diabetic foot disease, J. Clin. Orthop. Trauma, 17 (2021), 88-93. https://doi.org/10.1016/j.jcot.2021.01.017 doi: 10.1016/j.jcot.2021.01.017
    [7] P. R. J. Vas, J. Lucas, S. Arshad, M. E. Edmonds, Neuropathic diabetic foot ulceration, in Limb Salvage of the Diabetic Foot, Springer, Cham, (2019), 53-76. https://doi.org/10.1007/978-3-319-17918-6_4
    [8] Z. Iqbal, S. Azmi, R. Yadav, M. Ferdousi, M. Kumar, D. J. Cuthbertson, et al., Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy, Clin. Ther., 40 (2018), 828-849. https://doi.org/10.1016/j.clinthera.2018.04.001 doi: 10.1016/j.clinthera.2018.04.001
    [9] K. N. Lew, T. Arnold, C. Cantelmo, F. Jacque, H. Posada-Quintero, P. Luthra, et al., Diabetes distal peripheral neuropathy: Subtypes and diagnostic and screening technologies, J. Diabetes Sci. Technol., 16 (2022), 295-320. https://doi.org/10.1177%2F19322968211035375
    [10] S. W. Ahn, B. N. Yoon, J. E. Kim, J. M. Seok, K. K. Kim, Y. M. Lim, et al., Nerve conduction studies: basic principal and clinical usefulness, Ann. Clin. Neurophysiol., 20 (2018), 71-78. https://doi.org/10.14253/acn.2018.20.2.71 doi: 10.14253/acn.2018.20.2.71
    [11] J. R. Daube, D. I. Rubin, Nerve conduction studies, in Aminoff's Electrodiagnosis in Clinical Neurology, 6th edition, (2012), 289-325. https://doi.org/10.1016/b978-1-4557-0308-1.00013-3
    [12] M. P. Pereira, S. Mühl, E. M. Pogatzki-Zahn, K. Agelopoulos, S. Ständer, Intraepidermal nerve fiber density: Diagnostic and therapeutic relevance in the management of chronic pruritus: A review, Dermatol. Ther. (Heidelb), 6 (2016), 509-517. https://dx.doi.org/10.1007%2Fs13555-016-0146-1
    [13] S. Løseth, S. Lindal, E. Stålberg, S. I. Mellgren, Intraepidermal nerve fibre density, quantitative sensory testing and nerve conduction studies in a patient material with symptoms and signs of sensory polyneuropathy, Eur. J. Neurol., 13 (2006), 105-111. https://doi.org/10.1111/j.1468-1331.2006.01232.x doi: 10.1111/j.1468-1331.2006.01232.x
    [14] M. Stefano, F. Cordella, S. M. L. Gioi, L. Zollo, Electrical stimulation of the human median nerve: A comparison between anatomical and simplified simulation models, in 10th International IEEE/EMBS Conference on Neural Engineering (NER), (2021), 769-772. https://doi.org/10.1109/NER49283.2021.9441187
    [15] J. H. K. Kim, J. B. Davidson, O. Röhrle, T. K. Soboleva, A. J. Pullan, Anatomically based lower limb nerve model for electrical stimulation, Biomed. Eng. Online, 6 (2007), https://doi.org/10.1186/1475-925X-6-48 doi: 10.1186/1475-925X-6-48
    [16] M. Zelechowski, G. Valle, S. A. Raspopovic, A computational model to design neural interfaces for lower-limb sensory neuroprostheses, J. NeuroEng. Rehabil., 17 (2020), https://doi.org/10.1186/s12984-020-00657-7 doi: 10.1186/s12984-020-00657-7
    [17] L. R. Humphrey, H. A. Hemami, A computational human model for exploring the role of the feet in balance, J. Biomech., 43 (2010), 3199-3206. https://doi.org/10.1016/j.jbiomech.2010.07.021 doi: 10.1016/j.jbiomech.2010.07.021
    [18] J. W. Fernandez, M. Z. Ul Haque, P. J. Hunter, K. Mithraratne, Mechanics of the foot Part 1: a continuum framework for evaluating soft tissue stiffening in the pathologic foot, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 1056-1070. https://doi.org/10.1002/cnm.2494 doi: 10.1002/cnm.2494
    [19] K. Mithraratne, H. Ho, P. J. Hunter, J. W. Fernandez, Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 1071-1081. https://doi.org/10.1002/cnm.2493 doi: 10.1002/cnm.2493
    [20] M. Z. Ul Haque, P. Du, L. K. Cheng, Geometrical interruption in the nerve anatomical model of the foot to simulate small fiber neuropathy, Indian J. Sci. Technol., 10 (2017). https://dx.doi.org/10.17485/ijst/2017/v10i29/117372 doi: 10.17485/ijst/2017/v10i29/117372
    [21] M. Z. Ul Haque, P. Du, L. K. Cheng, A mathematical framework simulating nerve fibre physiology, Int. J. Adv. Appl. Sci., 4 (2017), 124-129. https://doi.org/10.21833/ijaas.2017.010.017 doi: 10.21833/ijaas.2017.010.017
    [22] A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. https://doi.org/10.1113/jphysiol.1952.sp004764 doi: 10.1113/jphysiol.1952.sp004764
    [23] S. Y. Chiu, J. M. Ritchie, R. B. Rogart, D.Stagg, A quantitative description of membrane currents in rabbit myelinated nerve, J. Physiol., 292 (1979), 149-166. https://doi.org/10.1113/jphysiol.1979.sp012843 doi: 10.1113/jphysiol.1979.sp012843
    [24] C. H. Berthold, M. Rydmark, Morphology of normal peripheral axons, in The Axon: Structure, Function and Pathophysiology, Oxford University Press, New York, Oxford, (1995), 13-48. http://dx.doi.org/10.1093/acprof:oso/9780195082937.003.0002
    [25] H. Tohgi, H. Tsukagoshi, Y. Toyokura, Quantitative changes with age in normal sural nerves, Acta Neuropathol., 38 (1977), 213-220. https://doi.org/10.1007/BF00688067 doi: 10.1007/BF00688067
    [26] M. Z. Ul Haque, P. Du, L. K. Cheng, M. D. Jacobs, An anatomically-based model of the nerves in the human foot, Int. J. Biomed. Biol. Eng., 6 (2012), 433-438. https://doi.org/10.5281/zenodo.1056751 doi: 10.5281/zenodo.1056751
    [27] M. Z. Ul Haque, P. Du, L. K. Cheng, M. D. Jacobs, An anatomically realistic geometrical model of the intra-epidermal nerves in the human foot, IFMBE Proc., 43 (2014), 368-371. http://dx.doi.org/10.1007/978-3-319-02913-9_94 doi: 10.1007/978-3-319-02913-9_94
    [28] W. J. Hedley, M. R. Nelson, D. P. Bellivant, P. F. Nielsen, A short introduction to CellML, Philos. Trans. R. Soc. London, Ser. A, 359 (2001), 1073-1089. https://doi.org/10.1098/rsta.2001.0817 doi: 10.1098/rsta.2001.0817
    [29] C. M. Lloyd, M. D. B. Halstead, P. F. Nielsen, CellML: its future, present and past, Prog. Biophys. Mol. Biol., 85 (2004), 433-450. https://doi.org/10.1016/j.pbiomolbio.2004.01.004 doi: 10.1016/j.pbiomolbio.2004.01.004
    [30] J. Fernandez, P. Hunter, V. Shim, K. Mithraratne, A subject-specific framework to inform musculoskeletal modeling: Outcomes from the IUPS physiome project, In Patient-Specific Computational Modeling, Lecture Notes in Computational Vision and Biomechanics, Springer, Dordrecht, 5 (2012). https://doi.org/10.1007/978-94-007-4552-0_2
    [31] R. Ward, Electro-muscle stimulation therapy, Compr. Biomed. Phys., 10 (2014), 231-253. https://doi.org/10.1016/B978-0-444-53632-7.01014-5 doi: 10.1016/B978-0-444-53632-7.01014-5
    [32] F. Yang, M. Anderson, S. He, K. Stephens, Y. Zheng, Z. Chen, et al., Differential expression of voltage-gated sodium channels in afferent neurons renders selective neural block by ionic direct current, Sci. Adv., 4 (2018), eaaq1438. https://doi.org/10.1126/sciadv.aaq1438 doi: 10.1126/sciadv.aaq1438
    [33] H. J. Lee, J. R. Bach, J. A. Delisa, Deep peroneal sensory nerve: Standardization in nerve conduction study, Am. J. Phys. Med. Rehabil., 69 (1990), 202-204. https://doi.org/10.1097/00002060-199008000-00006 doi: 10.1097/00002060-199008000-00006
    [34] N. Ongun, A. Oguzhanoglu, Comparison of the nerve conduction parameters in proximally and distally located muscles innervated by the bundles of median and ulnar nerves, Med. Princ. Pract., 25 (2016), 466-471. https://doi.org/10.1159/000447742 doi: 10.1159/000447742
    [35] S. J. Oh, Neuropathies of the foot, Clin. Neurophysiol., 118 (2007), 954-980. https://doi.org/10.1016/j.clinph.2006.12.016 doi: 10.1016/j.clinph.2006.12.016
    [36] G. I. Wolfe, N. S. Baker, A. A. Amato, C. E. Jackson, S. P. Nations, D. S. Saperstein, et al., Chronic cryptogenic sensory polyneuropathy: clinical and laboratory characteristics, Arch. Neurol., 56 (1999), 540-547. https://doi.org/10.1001/archneur.56.5.540 doi: 10.1001/archneur.56.5.540
    [37] S. J. Oh, M. Demirci, B. Dajani, A. C. Melo, G. C. Claussen, Distal sensory nerve conduction of the superficial peroneal nerve: new method and its clinical application, Muscle Nerve, 24 (2001), 689-694. https://doi.org/10.1002/mus.1056 doi: 10.1002/mus.1056
    [38] N. R. Holland, T. O. Crawford, P. Hauer, D. R. Cornblath, J. W. Griffin, J. C. McArthur, Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases, Ann. Neurol., 44 (1998), 47-59. https://doi.org/10.1002/ana.410440111 doi: 10.1002/ana.410440111
    [39] D. Sene, Small fiber neuropathy: diagnosis, causes, and treatment, Jt. Bone Spine, 85 (2018), 553-559. https://doi.org/10.1016/j.jbspin.2017.11.002 doi: 10.1016/j.jbspin.2017.11.002
    [40] P. Karlsson, A. M. Hincker, T. S. Jensen, R. Freeman, S. Haroutounian, Structural, functional, and symptom relations in painful distal symmetric polyneuropathies: a systematic review, Pain, 160 (2019), 286-297. https://doi.org/10.1097/j.pain.0000000000001381 doi: 10.1097/j.pain.0000000000001381
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1554) PDF downloads(88) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog