This paper focuses on a mathematical model for coffee berry disease infestation dynamics. This model considers coffee berry and vector populations with the interaction of fungal pathogens. In order to gain an insight into the global dynamics of coffee berry disease transmission and eradication on any given coffee farm, the assumption of logistic growth with a carrying capacity reflects the fact that the amount of coffee plants depends on the limited size of the coffee farm. First, we show that all solutions of the chosen model are bounded and non-negative with positive initial data in a feasible region. Subsequently, endemic and disease-free equilibrium points are calculated. The basic reproduction number with respect to the coffee berry disease-free equilibrium point is derived using a next generation matrix approach. Furthermore, the local stability of the equilibria is established based on the Jacobian matrix and Routh Hurwitz criteria. The global stability of the equilibria is also proved by using the Lyapunov function. Moreover, bifurcation analysis is proved by the center manifold theory. The sensitivity indices for the basic reproduction number with respect to the main parameters are determined. Finally, the numerical simulations show the agreement with the analytical results of the model analysis.
Citation: Abdisa Shiferaw Melese, Oluwole Daniel Makinde, Legesse Lemecha Obsu. Mathematical modelling and analysis of coffee berry disease dynamics on a coffee farm[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7349-7373. doi: 10.3934/mbe.2022347
This paper focuses on a mathematical model for coffee berry disease infestation dynamics. This model considers coffee berry and vector populations with the interaction of fungal pathogens. In order to gain an insight into the global dynamics of coffee berry disease transmission and eradication on any given coffee farm, the assumption of logistic growth with a carrying capacity reflects the fact that the amount of coffee plants depends on the limited size of the coffee farm. First, we show that all solutions of the chosen model are bounded and non-negative with positive initial data in a feasible region. Subsequently, endemic and disease-free equilibrium points are calculated. The basic reproduction number with respect to the coffee berry disease-free equilibrium point is derived using a next generation matrix approach. Furthermore, the local stability of the equilibria is established based on the Jacobian matrix and Routh Hurwitz criteria. The global stability of the equilibria is also proved by using the Lyapunov function. Moreover, bifurcation analysis is proved by the center manifold theory. The sensitivity indices for the basic reproduction number with respect to the main parameters are determined. Finally, the numerical simulations show the agreement with the analytical results of the model analysis.
[1] | O. Sujaritpong, S. Yoo-Kong, P. Bhadola, Analysis and dynamics of the international coffee trade network, J. Phys. Conf. Ser., 1719 (2021), 012106. https://doi.org/10.1088/1742-6596/1719/1/012106 doi: 10.1088/1742-6596/1719/1/012106 |
[2] | W. Garedew, F. Lemessa, F. Pinard, Assessment of berry drop due to coffee berry disease and non-CBD factors in arabica coffee under farmer's fields of Southwestern Ethiopia, Crop Prot., 98 (2017), 276–282. https://doi.org/10.1016/j.cropro.2017.04.012 doi: 10.1016/j.cropro.2017.04.012 |
[3] | A. Vieira, D. N. Silva, V. Varzea, O. S. Paulo, D. Batista, Novel insights on colonization routes and evolutionary potential of Colletotrichum kahawae, a severe pathogen of Coffea arabica, Mol. Plant Pathol., 19 (2018), 2488–2501. https://doi.org/10.1111/mpp.12726 doi: 10.1111/mpp.12726 |
[4] | D. Batista, D. N. Silva, A. Vieira, A. Cabral, A. S. Pires, A. Loureiro, et al., Legitimacy and implications of reducing Colletotrichum kahawae to subspecies in plant pathology, Front. Plant Sci., 7 (2017), 2051. https://doi.org/10.3389/fpls.2016.02051 doi: 10.3389/fpls.2016.02051 |
[5] | J. A. Mouen Bedimo, D. Bieysse, S. Nyasse, J. L. Notteghem, C. Cilas, Role of rainfall in the development of coffee berry disease in Coffea arabica caused by Colletotrichum kahawae, in Cameroon, Plant Pathol., 59 (2010), 324–329. https://doi.org/10.1111/j.1365-3059.2009.02214.x doi: 10.1111/j.1365-3059.2009.02214.x |
[6] | A. L. Gaitan, M. A. Cristancho, B. L. Castro Caicedo, C. A. Rivillas, PART I: Infectious diseases, compendium of coffee diseases and pests, Am. Phytopathol. Soc., 2016 (2016), 3–44. |
[7] | J. McDonald, A preliminary account of a disease of green Coffee berries in Kenya Colony, Trans. Br. Mycol. Soc., 11 (1926), 145–154. https://doi:10.1016/s0007-1536(26)80033-6 doi: 10.1016/s0007-1536(26)80033-6 |
[8] | H. Hindorf, Colletotrichum occurring on Coffea arabica; a review, J. Coffee Res., 5 (1975), 43–56. |
[9] | M. C. Silva, M. Nicole, L. Rijo, J. P. Geiger, Jr. C. J. Rodrigues, Cytochemical aspects of the plant–rust fungus interface during the compatible interaction Coffea arabica (cv. Caturra)–Hemileia vastatrix (race Ⅲ), Int. J. Plant Sci., 160 (1999), 79–91. https://doi.org/10.1086/314113 doi: 10.1086/314113 |
[10] | K. Alemu, G. Adugna, F. Lemessa, D. Muleta, Current status of coffee berry disease (Colletotrichum kahawae Waller and Bridge) in Ethiopia, Arch. Phytopathol. Plant Prot., 49 (2016), 421–433. |
[11] | E. Griffiths, J. N. Gibbs, J. M. Waller, Control of coffee berry disease, Ann. Appl. Biol., 67 (1991), 45–74. https://doi:10.1111/j.1744-7348.1971.tb02907.x doi: 10.1111/j.1744-7348.1971.tb02907.x |
[12] | G. Adugna, C. Jefuka, Resistance levels of Arabica coffee cultivars to coffee berry disease, coffee wilt and leaf rust diseases in Ethiopia, in Proceedings of the 12th Crop Science Society of Ethiopia (CSSE), 2006 (2006), 22–24. |
[13] | M. Ejeta, A review of coffee diseases and their control in Ethiopia, in Proceedings of the First Ethiopian Crop Protection Symposium, Addis Ababa (Ethiopia), 1985 (1985), 4–7. |
[14] | J. A. M. Bedimo, D. Bieysse, I. Njiayouom, J. P. Deumeni, C. Cilas, J. L. Notteghem, Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae, Eur. J. Plant Pathol., 119 (2007), 391–400. https://doi:10.1007/s10658-007-9169-x doi: 10.1007/s10658-007-9169-x |
[15] | J. M. Bedimo, I. Njiayouom, D. Bieysse, M. N. Nkeng, C. Cilas, J. L. Notteghem, Effect of shade on Arabica coffee berry disease development: Toward an agroforestry system to reduce disease impact, Phytopathology, 98 (2008), 1320–1325. https://doi.org/10.1094/PHYTO-98-12-1320 doi: 10.1094/PHYTO-98-12-1320 |
[16] | D. N. Silva, P. Talhinhas, L. Cai, L. Manuel, E. K. Gichuru, A. Loureiro, et al., Host-jump drives rapid and recent ecological speciation of the emergent fungal pathogen Colletotrichum kahawae, Mol. Ecol., 21 (2012), 2655–2670. https://doi.org/10.1111/j.1365-294X.2012.05557.x doi: 10.1111/j.1365-294X.2012.05557.x |
[17] | M. D. C. Silva, V. Varzea, L. Guerra-Guimaraes, H. G. Azinheira, D. Fernandez, A. S. Petitot, et al., Coffee resistance to the main diseases: leaf rust and coffee berry disease, Braz. J. Plant Physiol., 18 (2006), 119–147. https://doi:10.1590/s1677-04202006000100010 doi: 10.1590/s1677-04202006000100010 |
[18] | W. Workafes, K. Kassu, Coffee production systems in Ethiopia, in Proceedings of the workshop on control of coffee berry disease in Ethiopia, 2000. |
[19] | D. Fotsa, E. Houpa, D. Bekolle, C. Thron, M. Ndoumbe, Mathematical modelling and optimal control of anthracnose, preprint, arXiv: 1307.1754. |
[20] | N. J. Cunniffe, C. A. Gilligan, Invasion, persistence and control in epidemic models for plant pathogens: the effect of host demography, J. R. Soc., Interface, 7 (2010), 439–451. https://doi.org/10.1098/rsif.2009.0226 doi: 10.1098/rsif.2009.0226 |
[21] | Y. Fotso, S. Touzeau, B. Tsanou, S. Bowong, F. Grognard, Modelling and optimal strategy to control coffee berry borer, Math. Methods Appl. Sci., 44 (2021), 14569–14592. https://doi.org/10.1002/mma.7726 doi: 10.1002/mma.7726 |
[22] | A. Mohammed, A. Jambo, Importance and characterization of coffee berry disease (Colletotrichum kahawae) in Borena and Guji zones, Southern Ethiopia, J. Plant Pathol. Microb., 6 (2015), 302. https://doi.org/10.4172/2157-7471.1000302 doi: 10.4172/2157-7471.1000302 |
[23] | A. M. Klein, I. Steffan-Dewenter, T. Tscharntke, Fruit set of highland coffee increases with the diversity of pollinating bees, in Proceedings of the Royal Society of London. Series B: Biological Sciences, 270 (2003), 955–961. https://doi.org/10.1098/rspb.2002.2306 |
[24] | J. A. Mouen Bedimo, D. Bieysse, C. Cilas, J. L. Nott$\acute{e}$ghem, Spatio-temporal dynamics of arabica coffee berry disease caused by Colletotrichum kahawae on a plot scale, Plant Dis., 91 (2007), 1229–1236. https://doi.org/10.1094/PDIS-91-10-1229\newpage doi: 10.1094/PDIS-91-10-1229 |
[25] | H. Kagezi, K. Patrick, K. Judith, O. D. Nicholas, N. Lilian, W. Wagoire, Predicting the response of insect pests and diseases of Arabica coffee to climate change along an altitudinal gradient in Mt. Elgon region, Uganda, J. Agric. Environ. Sci., 7 (2018), 134–140. https://doi.org/10.15640/jaes.v7n1a14 doi: 10.15640/jaes.v7n1a14 |
[26] | J. S. Bale, G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, et al., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores, Global Change Biol., 8 (2002), 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x doi: 10.1046/j.1365-2486.2002.00451.x |
[27] | J. M. Bedimo, C. Cilas, J. L. Nott$\acute{e}$ghem, D. Bieysse, Effect of temperatures and rainfall variations on the development of coffee berry disease caused by Colletotrichum kahawae, Crop Prot., 31 (2012), 125–131. |
[28] | M. Jirata, S. Asefa, The status of coffee berry disease in Oromia, in Processing of the workshop on control coffee berry disease in Ethiopia 13–15 August 1999, 2000. |
[29] | N. N. Nicholls, Observed climate variability and change, Cambridge University Press Cambridge, 1996 (1996), 135–192. https://hal.archives-ouvertes.fr/hal-03344530. |
[30] | A. G. Ahmed, L. K. Murungi, R. Babin, Developmental biology and demographic parameters of antestia bug Antestiopsis thunbergii (Hemiptera: Pentatomidae), on Coffea arabica (Rubiaceae) at different constant temperatures, Int. J. Trop. Insect. Sci., 36, (2016), 119–127. https://doi.org/10.1017/S1742758416000072 doi: 10.1017/S1742758416000072 |
[31] | J. S. Bale, G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, et al., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores, Global Change Biol., 8 (2002), 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x doi: 10.1046/j.1365-2486.2002.00451.x |
[32] | G. Adunga, The influence of Climate condition on resistance level of released coffee types to coffee berry disease (CBD), in proceeding of the 2nd Annual conference of Crop Protection Society of Ethiopia (CPSE), 1994 (1994), 26–27. |
[33] | J. M. Waller, Water-borne spore dispersal in coffee berry disease and its relation to control, Ann. Appl. Biol., 71 (1972), 1–18. https://doi:10.1111/j.1744-7348.1972.tb04712.x doi: 10.1111/j.1744-7348.1972.tb04712.x |
[34] | T. Abraha, F. Al Basir, L. L. Obsu, D. F. Torres, Pest control using farming awareness: impact of time delays and optimal use of biopesticides, Chaos, Solitons, Fractals, 146 (2021), 110869. https://doi.org/10.1016/j.chaos.2021.110869 doi: 10.1016/j.chaos.2021.110869 |
[35] | Y. Fotso, S. Touzeau, B. Tsanou, F. Grognard, S. Bowong, Mathematical modelling of a pest in an age-structured crop model: the coffee berry borer case, preprint, arXiv: hal-03505679v2. |
[36] | M. M Campanha, R. H. S. Santos, G. B. D. Freitas, H. E. P. Martinez, C. Jaramillo-Botero, S. L. Garcia, Comparative analysis of litter and soil characteristics under coffee (Coffea arabica L.) crop in agroforestry and monoculture systems, Revista Árvore, 31 (2007), 805–812. |
[37] | M. A. Khan, A. Wahid, S. Islam, I. Khan, S. Shafie, T. Gul, Stability analysis of an SEIR epidemic model with non-linear saturated incidence and temporary immunity, Int. J. Adv. Appl. Math. Mech., 2 (2015), 1–14. |
[38] | A. Mojeeb, E. Osman, AK. Isaac, Simple mathematical model for malaria transmission, J. Adv. Math. Comp. Sci., 25 (2017), 1–24. https://doi.org/10.9734/jamcs/2017/37843 doi: 10.9734/jamcs/2017/37843 |
[39] | J. P. LaSalle, The stability of dynamical systems, society for industrial and applied mathematics, in Proceedings of the Conference Series in Applied Mathematics, 1976. |
[40] | C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361. http://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361 |
[41] | N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0 |
[42] | P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6 |
[43] | G. Peyser, On the Cauchy-Lipschitz Theorem, Am. Math. Mon., 65 (1958), 760–762. https://doi.org/10.2307/2310680 doi: 10.2307/2310680 |