Research article Special Issues

A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs

  • Received: 15 January 2022 Revised: 02 April 2022 Accepted: 19 April 2022 Published: 26 April 2022
  • We propose a new mathematical framework for the addition of stochastic attachment to biofilm models, via the use of random ordinary differential equations. We focus our approach on a spatially explicit model of cellulolytic biofilm growth and formation that comprises a PDE-ODE coupled system to describe the biomass and carbon respectively. The model equations are discretized in space using a standard finite volume method. We introduce discrete attachment events into the discretized model via an impulse function with a standard stochastic process as input. We solve our model with an implicit ODE solver. We provide basic simulations to investigate the qualitative features of our model. We then perform a grid refinement study to investigate the spatial convergence of our model. We investigate model behaviour while varying key attachment parameters. Lastly, we use our attachment model to provide evidence for a stable travelling wave solution to the original PDE-ODE coupled system.

    Citation: Jack M. Hughes, Hermann J. Eberl, Stefanie Sonner. A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6582-6619. doi: 10.3934/mbe.2022310

    Related Papers:

  • We propose a new mathematical framework for the addition of stochastic attachment to biofilm models, via the use of random ordinary differential equations. We focus our approach on a spatially explicit model of cellulolytic biofilm growth and formation that comprises a PDE-ODE coupled system to describe the biomass and carbon respectively. The model equations are discretized in space using a standard finite volume method. We introduce discrete attachment events into the discretized model via an impulse function with a standard stochastic process as input. We solve our model with an implicit ODE solver. We provide basic simulations to investigate the qualitative features of our model. We then perform a grid refinement study to investigate the spatial convergence of our model. We investigate model behaviour while varying key attachment parameters. Lastly, we use our attachment model to provide evidence for a stable travelling wave solution to the original PDE-ODE coupled system.



    加载中


    [1] D. López, H. Vlamakis, R. Kolter, Biofilms, CSH Perspect. Biol., 13 (2010), 1–11. https://doi.org/10.1101/cshperspect.a000398 doi: 10.1101/cshperspect.a000398
    [2] L. Hall-Stoodley, J. W. Costerton, P. Stoodley, Bacterial biofilms: Form the natural environment to infectious diseases, Nat. Rev. Microbiol., 2 (2004), 95–108. https://doi.org/10.1038/nrmicro821 doi: 10.1038/nrmicro821
    [3] R. M. Donlan, Biofilms: Microbial life on surfaces, Emerg. Infect. Dis., 8 (2002), 881–890. https://doi.org/10.3201/eid0809.020063 doi: 10.3201/eid0809.020063
    [4] O. Wanner, H. Eberl, E. Morgenroth, D. R. Noguera, C. Picioreanu, B. Rittmann, et al., Math. model. biofilms, IWA Publishing, 2006.
    [5] M. C. Van Loosdrecht, J. J. Heijnen, H. Eberl, J. Kreft, C. Picioreanu, Mathematical modelling of biofilm structures, Antonie van Leeuwenhoek, 81 (2002), 245–256. https://doi.org/10.1023/a:1020527020464 doi: 10.1023/a:1020527020464
    [6] Y. H. An, R. J. Friedman, Concise review of mechanisms of bacterial adhesion to biomaterial surfaces, J. Biomed. Mater. Res., 43 (1998), 338–348. https://doi.org/10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b doi: 10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b
    [7] A. Dumitrache, G. Wolfaardt, G. Allen, S. N. Liss, L. R. Lynd, Form and function of Clostridium thermocellum biofilms, Appl. Environ. Microbiol., 79 (2013), 231–239. https://doi.org/10.1128/AEM.02563-12 doi: 10.1128/AEM.02563-12
    [8] Z. W. Wang, S. H. Lee, J. G. Elkins, J. L. Morrell-Falvey, Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidianis and Clostridium thermocellum, AMB Express, 1 (2011), 1–10. https://doi.org/10.1186/2191-0855-1-30 doi: 10.1186/2191-0855-1-30
    [9] Y. Rohanizadegan, S. Sonner, H. J. Eberl, Discrete attachment to a cellulolytic biofilm modeled by an Itô stochastic differential equation, Math. Biosci. Eng., 17 (2020), 2236–2271. https://doi.org/10.3934/mbe.2020119 doi: 10.3934/mbe.2020119
    [10] B. K. Øksendal, Stochastic differential equations: an introduction with applications, Springer, 2013.
    [11] A. Carroll, C. Somerville, Cellulosic biofuels, Annu. Rev. Plant. Biol., 60 (2009), 165–182. https://doi.org/10.1146/annurev.arplant.043008.092125 doi: 10.1146/annurev.arplant.043008.092125
    [12] M. H. Langholtz, B. J. Stokes, L. M. Eaton, 2016 billion-ton report: Advancing domestic resources for a thirving bioeconomy, Oak Ridge National Lab., 2016.
    [13] J. G. Linger, A. Darzins, Consolidated Bioprocessing, Springer, 2013.
    [14] B. G. Schuster, M. S. Chinn, Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production, Bioenergy Res., 6 (2012), 416–435. https://doi.org/10.1007/s12155-012-9278-z doi: 10.1007/s12155-012-9278-z
    [15] V. Mbaneme-Smith, M. S. Chinn, Consolidated bioprocessing for biofuel production: Recent advances, Energy Emission Control Technol., 3 (2015), 23–44. https://doi.org/10.2147/EECT.S63000 doi: 10.2147/EECT.S63000
    [16] H. J. Eberl, E. M. Jalbert, A. Dumitrache, G. M. Wolfaardt, A spatially explicit model of inverse colony formation of cellulolytic biofilms, Biochem. Eng. J., 122 (2017), 141–151. https://doi.org/10.1016/j.bej.2017.03.007 doi: 10.1016/j.bej.2017.03.007
    [17] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations, Cornell University Department of Computer Science and Center for Applied Mathematics, 1996.
    [18] B. D'Acunto, V. Luongo, M. R. Mattei, Free boundary approach to modelling multispecies biofilms, Ric. Mat., 70 (2020), 267–284. https://doi.org/10.1007/s11587-020-00523-7 doi: 10.1007/s11587-020-00523-7
    [19] A. Mašić, H. J. Eberl, Persistence in a single species CSTR model with suspended flocs and wall attached biofilms, Bull. Math. Biol., 74 (2012), 1001–1026. https://doi.org/10.1007/s11538-011-9707-8 doi: 10.1007/s11538-011-9707-8
    [20] H. J. Gaebler, H. J. Eberl, A simple model of biofilm growth in a porous medium that accounts for detachment and attachment of suspended biomass and their contribution to substrate degradation, European J. Appl. Math., 29 (2018), 1110-1140. https://doi.org/10.1017/S0956792518000189 doi: 10.1017/S0956792518000189
    [21] H. J. Gaebler, H. J. Eberl, Thermodynamic inhibition in chemostat models: With an application to bioreduction of uranium, Bull. Math. Biol., 82 (2020), 1–25. https://doi.org/10.1007/s11538-020-00758-3 doi: 10.1007/s11538-020-00758-3
    [22] H. J. Eberl, D. F. Parker, M. C. Van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Med., 3 (2001), 161–175. https://doi.org/https://doi.org/10.1080/10273660108833072 doi: 10.1080/10273660108833072
    [23] H. J. Eberl, L. Demaret, A finite difference scheme for a degenerated diffusion equation arising in microbial ecology, Electron. J. Differential Equations, 15 (2007), 77–95.
    [24] J. Monod, The growth of bacterial cultures, Annu. Rev. Microbiol., 3 (1949), 371–394.
    [25] A. Dumitrache, H. J. Eberl, D. G. Allen, G. M. Wolfaardt, Mathematical modeling to validate on-line CO$_2$ measurements as a metric for cellulolytic biofilm activity in continuous-flow bioreactors, Biochem. Eng. J., 101 (2015), 55–67. https://doi.org/10.1016/j.bej.2015.04.022 doi: 10.1016/j.bej.2015.04.022
    [26] M. Ghasemi, H. J. Eberl, Time adaptive numerical solution of a highly degenerate diffusion-reaction biofilm model based on regularisation, J. Sci. Comput., 74 (2018), 1060–1090. https://doi.org/10.1007/s10915-017-0483-y doi: 10.1007/s10915-017-0483-y
    [27] X. Han, P. E. Kloeden, Random ordinary differential equations and their numerical solution, 1$^st$ edition, Springer, 2017.
    [28] M. Lefebvre, Applied Stochastic Processes, Springer, 2007.
    [29] A. Dumitrache, G. M. Wolfaardt, D. G. Allen, D. G. Liss, L. R. Lynd, Tracking the cellulolytic activity of Clostridium thermocellum biofilms, Biotechnol. Biofuels, 6 (2013), 1–15. https://doi.org/10.1186/1754-6834-6-175 doi: 10.1186/1754-6834-6-175
    [30] M. A. Efendiev, S. V. Zelik, H. J. Eberl, Existence and longtime behavior of a biofilm model, Commun. Pure Appl. Anal., 8 (2009), 509–531. https://doi.org/10.3934/cpaa.2009.8.509 doi: 10.3934/cpaa.2009.8.509
    [31] W. Walter Ordinary differential equations, 1$^st$ edition, Springer, 1998.
    [32] Y. Asai, E. Hermmann, P. E. Kloeden, Stiff integration of stiff random ordinary differential equations, Stoch. Anal. Appl., 31 (2013), 293–313.
    [33] Y. Asai, P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations, Commun. Appl. Anal., 17 (2013), 511–528.
    [34] L. Shampine, S. Thompson, J. Kierzenka, G. Byrne, Non-negative solutions of ODEs, Appl. Math. Comput., 170 (2005), 556–569. https://doi.org/10.1016/j.amc.2004.12.011 doi: 10.1016/j.amc.2004.12.011
    [35] L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM Society for Industrial and Applied Mathematics, 2000.
    [36] J. Hughes, A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs, M. Sc. Thesis, University of Guelph, 2021. https://hdl.handle.net/10214/26321
    [37] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), 65–98. https://doi.org/10.1137/141000671 doi: 10.1137/141000671
    [38] R. V. Hogg, E. A. Tanis, D. L. Zimmermanm Probability and statistical inference, 9th edition, Pearson, 2020.
    [39] W. Burger, M. Burge, Principles of digital image processing: core algorithms, Springer-Verlag, 2009.
    [40] E. Jalbert, Comparison of a semi-implicit and a fully-implicit time integration method for a highly degenerate diffusion-reaction equations coupled with an ordinary differential equations, M. Sc. Thesis, University of Guelph, 2016. http://hdl.handle.net/10214/9448
    [41] K. Mitra, J. M. Hughes, S. Sonner, H. J. Eberl, J. D. Dockery, Travelling waves in a PDE-ODE coupled system with nonlinear diffusion, preprint, arXiv: 2202.07748.
    [42] K. Eichinger, M. V. Gnann, C. Kuehn, Multiscale analysis for traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations, preprint, arXiv: 2002.07234.
    [43] C. H. S. Hamster, H. J. Hupkes, Stability of traveling waves on exponentially long timescales in stochastic reaction-diffusion equations, SIAM J. Appl. Dyn. Syst., 19 (2020), 2469–2499. https://doi.org/10.1137/20M1323539 doi: 10.1137/20M1323539
    [44] C. H. S. Hamster, H. J. Hupkes, A general framework for stochastic traveling waves and patterns, with application to neural field equations, SIAM J. Appl. Dyn. Syst., 15 (2016), 195–234. https://doi.org/10.1137/15M102856X doi: 10.1137/15M102856X
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2156) PDF downloads(133) Cited by(3)

Article outline

Figures and Tables

Figures(20)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog