Research article Special Issues

Stationary patterns in bistable reaction-diffusion cellular automata

  • Received: 31 January 2022 Revised: 16 March 2022 Accepted: 05 April 2022 Published: 13 April 2022
  • In this paper, we study stationary patterns of bistable reaction-diffusion cellular automata, i.e., models with discrete time, space and state. We show the rich variability based on the interplay of the capacity and viability and the specific form of reaction functions. While stationary $ k $-periodic patterns occur naturally in many situations in large (exponential) numbers, there exist extreme situations for which there are no heterogeneous patterns. Moreover, nonmonotone dependence of the number of stationary patterns on the diffusion parameter is shown to be natural in the fully discrete setting.

    Citation: Daniel Špale, Petr Stehlík. Stationary patterns in bistable reaction-diffusion cellular automata[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 6072-6087. doi: 10.3934/mbe.2022283

    Related Papers:

  • In this paper, we study stationary patterns of bistable reaction-diffusion cellular automata, i.e., models with discrete time, space and state. We show the rich variability based on the interplay of the capacity and viability and the specific form of reaction functions. While stationary $ k $-periodic patterns occur naturally in many situations in large (exponential) numbers, there exist extreme situations for which there are no heterogeneous patterns. Moreover, nonmonotone dependence of the number of stationary patterns on the diffusion parameter is shown to be natural in the fully discrete setting.



    加载中


    [1] J. D. Logan, An introduction to nonlinear partial differential equations, New York, NY: John Wiley & Sons, 1994.
    [2] S.-N. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Differ. Equat., 149 (1998), 248–291. https://doi.org/10.1006/jdeq.1998.3478. doi: 10.1006/jdeq.1998.3478
    [3] P. C. Fife, J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335–361. https://doi.org/10.1007/BF00250432. doi: 10.1007/BF00250432
    [4] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. App. Math., 47 (1987), 556–572. https://doi.org/10.1137/0147038 doi: 10.1137/0147038
    [5] B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation, SIAM J. Math. Anal., 22 (1991), 1016–1020. https://doi.org/10.1137/0522066 doi: 10.1137/0522066
    [6] J. Mallet-Paret, Spatial Patterns, Spatial Chaos and Traveling Waves in Lattice Differential Equations, In Stochastic and Spatial Structures of Dynamical Systems, 45 (1996), 105–129.
    [7] C. E. Elmer, E. S. Van Vleck, Spatially Discrete FitzHugh-Nagumo Equations, SIAM J. Appl. Math., 65 (2005), 1153–1174. https://doi.org/10.1137/S003613990343687X doi: 10.1137/S003613990343687X
    [8] H. J. Hupkes, S. M. Verduyn-Lunel, Analysis of Newton's Method to Compute Travelling Waves in Discrete Media, J. Dyn. Diff. Eq. 17 (2005), 523–572. https://doi.org/10.1007/s10884-005-5809-z
    [9] H. J. Hupkes, L. Morelli, P. Stehlík, V. Švígler, Counting and ordering periodic stationary solutions of lattice Nagumo equations, Appl. Math. Lett., 98 (2019), 398–405. https://doi.org/10.1016/j.aml.2019.06.038 doi: 10.1016/j.aml.2019.06.038
    [10] V. Švígler, Periodic stationary solutions of the Nagumo lattice differential equation: Existence regions and their number, Electron. J. Qual. Theory Differ. Equ., 23 (2021), 1–31. https://doi.org/10.14232/ejqtde.2021.1.23 doi: 10.14232/ejqtde.2021.1.23
    [11] T. Toffoli, N. Margolus, Cellular automata machines: A new environment for modeling, MIT Press, Cambridge, 1987.
    [12] S. Wolfram, A new kind of science, Wolfram Media, Inc., Champaign, IL, 2002.
    [13] A. Adamatzky, Reaction-diffusion automata. Phenomenology, localisations, computation, volume 1, Berlin: Springer, 2013. https: //doi.org/10.1007/978-3-642-31078-2
    [14] S.-N. Chow, J. Mallet-Paret, E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Comput. Dyn., 4 (1996), 109–178.
    [15] Z. Pospíšil, Discrete reaction-dispersion equation, In Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications, Cham: Springer, (2020), 323–333. https://doi.org/10.1007/978-3-030-35502-9_14
    [16] H. J. Hupkes, L. Morelli, P. Stehlík, V. Švígler, Multichromatic travelling waves for lattice Nagumo equations, Appl. Math. Comput., 361 (2019), 430–452. https://doi.org/10.1016/j.amc.2019.05.036 doi: 10.1016/j.amc.2019.05.036
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1848) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog